Y. Kosaki et al. / Tetrahedron Letters 51 (2010) 1856–1859
1859
6. 5,15-diHETE: (a) Maas, R. L.; Turk, J.; Oates, J. A.; Brash, A. R. J. Biol. Chem. 1982,
257, 7056–7067; (b) Chavis, C.; Chanez, P.; Vachier, I.; Bousquet, J.; Michel, F.
B.; Godard, P. Biochem. Biophys. Res. Commun. 1995, 207, 273–279; (c) Chavis,
C.; Vachier, I.; Chanez, P.; Bousquet, J.; Godard, P. J. Exp. Med. 1996, 183, 1633–
1643.
the corresponding MTPA ester, thus confirming no racemization. The
transformation was applied to that delineated in Scheme 6.
Et
I– / NaN(TMS)2
Et
OR
PPh3
7. (a) Rokach, J.; Guindon, Y.; Young, R. N.; Adams, J.; Atkinson, J. G. In The Total
Synthesis of Natural Products; ApSimon, J., Ed.; Wiley: New York, 1988; Vol. 7, p
141; (b) Sato, F.; Kobayashi, Y. Synlett 1992, 849–857.
8. 5,12-diHETE: (a) Corey, E. J.; Mrfat, A.; Laguzza, B. C. Tetrahedron Lett. 1981, 22,
3339–3342; (b) Adams, J.; Leblanc, Y.; Rokach, J. Tetrahedron Lett. 1984, 25,
1227–1230.
3
93%
Bu4NF
88%
i, R = TBDPS
ii, R = H
20. Spectral data of the intermediates. Aldehyde 6: ½a D21
ꢂ
+16 (c 0.91, CHCl3); 1H NMR
9. 5,15-diHETE: Nicolaou, K. C.; Webber, S. E. J. Am. Chem. Soc. 1984, 106, 5734–
5736.
(300 MHz, CDCl3) d 0.03 (s, 3H), 0.07 (s, 3H), 0.91 (s, 9H), 1.46–1.78 (m, 4H),
2.34 (t, J = 7 Hz, 2H), 3.68 (s, 3H), 4.41–4.49 (m, 1H), 6.28 (ddd, J = 15, 8, 1.5 Hz,
1H), 6.79 (dd, J = 15, 4.5 Hz, 1H), 9.58 (d, J = 8 Hz, 1H); 13C NMR (75 MHz,
CDCl3) d ꢁ4.9 (+), ꢁ4.6 (+), 20.2 (ꢁ), 25.8 (+), 33.8 (ꢁ), 36.3 (ꢁ), 51.6 (+), 71.2
10. Kitano, Y.; Matsumoto, T.; Sato, F. Tetrahedron 1988, 44, 4073–4086.
11. (a) Martin, V. S.; Woodard, S. S.; Katsuki, T.; Yamada, Y.; Ikeda, M.; Sharpless, K.
B. J. Am. Chem. Soc. 1981, 103, 6237–6240; (b) Gao, Y.; Klunder, J. M.; Hanson, R.
M.; Ko, S. Y.; Masamune, H.; Sharpless, K. B. J. Am. Chem. Soc. 1987, 109, 5765–
5780.
12. Similar compounds which possess the alkoxy or acyloxy group instead of the
TBSO group have been synthesized: (a) Guidon, Y.; Zamboni, R.; Lau, C.-K.;
Rokach, J. Tetrahedron Lett. 1982, 23, 739–742; (b) Spur, B.; Crea, A.; Peters, W.
Arch. Pharm. 1985, 318, 225–228; (c) Pianetti, P.; Rollin, P.; Pougny, J. R.
Tetrahedron Lett. 1986, 27, 5853–5856.
13. (a) Leblanc, Y.; Fitzsimmons, B.; Adams, J.; Rokach, J. Tetrahedron Lett. 1985, 26,
1399–1402; (b) Gravier-Pelletier, C.; Dumas, J.; Merrer, Y. L.; Depezay, J.-C.
Tetrahedron 1992, 48, 2441–2452; (c) Peng, Z.-H.; Li, Y.-L.; Wu, W.-L.; Liu, C.-X.;
Wu, Y.-L. J. Chem. Soc., Perkin Trans. 1 1996, 1057–1066.
14. Sellès, P.; Lett, R. Tetrahedron Lett. 2002, 43, 4621–4625.
15. (a) Nakayama, Y.; Kumar, G. B.; Kobayashi, Y. J. Org. Chem. 2000, 65, 707–715;
(b) Kobayashi, Y.; Shimazaki, T.; Taguchi, H.; Sato, F. J. Org. Chem. 1990, 55,
5324–5335.
(+), 131.0 (+), 159.5 (+), 173.7 (ꢁ), 193.6 (+). Alcohol 29: ½a D21
ꢂ
+34 (c 0.83,
CHCl3); 1H NMR (300 MHz, CDCl3) d 0.79 (t, J = 7.5, 3H), 1.07 (s, 9H), 1.40–1.61
(m, 2H), 2.30 (dt, J = 7, 7 Hz, 2H), 2.82 (dd, J = 7, 7 Hz, 2H), 3.62 (t, J = 7 Hz, 2H),
4.17 (ddd, J = 6, 6, 6 Hz, 1H), 5.28 (dt, J = 11, 7 Hz, 1H), 5.34–5.55 (m, 2H), 5.61
(dd, J = 15, 6 Hz, 1H), 5.90 (dd, J = 11, 11 Hz, 1H), 6.20 (dd, J = 15, 11 Hz, 1H),
7.30–7.45 (m, 6H), 7.61–7.74 (m, 4H); 13C NMR (75 MHz, CDCl3) d 9.0 (+), 19.5
(ꢁ), 26.2 (ꢁ), 27.1 (+), 30.7 (ꢁ), 30.8 (ꢁ), 62.2 (ꢁ), 75.2 (+), 125.1 (+), 125.9 (+),
127.4 (+), 127.5 (+), 128.5 (+), 129.0 (+), 129.5 (+), 129.6 (+), 130.8 (+), 134.4
(ꢁ), 134.6 (ꢁ), 136.0 (+), 136.1 (+), 136.3 (+). Salt 31: 1H NMR (300 MHz, CDCl3)
d 0.78 (t, J = 7.5 Hz, 3H), 1.04 (s, 9H), 1.40–1.62 (m, 2H), 2.35–2.54 (m, 2H), 2.55
(dd, J = 7.5, 7.5 Hz, 2H), 3.62–3.86 (m, 2H), 4.13 (q, J = 6 Hz, 1H), 5.10 (dt, J = 11,
7.5 Hz, 1H), 5.27–5.40 (m, 1H), 5.54–5.69 (m, 2H), 5.84 (dd, J = 11, 11 Hz, 1H),
6.01 (dd, J = 15, 11 Hz, 1H), 7.26–7.44 (m, 6H), 7.59–7.87 (m, 19H). Methyl ester
32: ½a 2D4
ꢂ
+30 (c 0.84, CHCl3); 1H NMR (300 MHz, CDCl3) d 0.02 (s, 3H), 0.05 (s,
3H), 0.79 (t, J = 7.5, 3H), 0.89 (s, 9H), 1.07 (s, 9H), 1.41–1.79 (m, 6H), 2.31 (t,
J = 7.5 Hz, 2H), 2.81 (dd, J = 6.5, 6.5 Hz, 2H), 2.91 (dd, J = 6.5, 6.5 Hz, 2H), 3.65 (s,
3H), 4.08–4.24 (m, 2H), 5.19–5.51 (m, 4H), 5.60 (dd, J = 15, 6.5 Hz, 1H), 5.63
(dd, J = 15, 6.5 Hz, 1H), 5.90 (dd, J = 11, 11 Hz, 1H), 5.97 (dd, J = 11, 11 Hz, 1H),
6.18 (dd, J = 15, 11 Hz, 1H), 6.44 (dd, J = 15, 11 Hz, 1H), 7.29–7.45 (m, 6H),
7.62–7.73 (m, 4H); 13C NMR (75 MHz, CDCl3) d ꢁ4.7 (+), ꢁ4.2 (+), 9.1 (+), 18.3
(ꢁ), 19.5 (ꢁ), 20.8 (ꢁ), 25.9 (+), 26.0 (ꢁ), 26.1 (ꢁ), 27.1 (+), 30.7 (ꢁ), 34.1 (ꢁ),
37.7 (ꢁ), 51.5 (+), 72.8 (+), 75.3 (+), 124.5 (+), 125.2 (+), 127.4 (+), 127.5 (+),
128.1 (+), 128.31 (+), 128.33 (+), 128.5 (+), 129.1 (+), 129.4 (+), 129.5 (+), 129.6
(+), 134.4 (ꢁ), 134.6 (ꢁ), 136.0 (ꢁ), 136.1 (ꢁ), 136.2 (ꢁ), 137.0 (ꢁ), 174.1 (ꢁ).
16. Büchi, G.; Wüest, H. J. Am. Chem. Soc. 1978, 100, 294–295.
17. (a) Avery, M. A.; Chong, W. K. M.; Jennings-White, C. J. Am. Chem. Soc. 1992, 114,
974–979; (b) Avery, M. A.; Jennings-White, C.; Chong, W. K. M. J. Org. Chem.
1989, 54, 1789–1792.
18. (a) Murakami, M.; Sakita, K.; Igawa, K.; Tomooka, K. Org. Lett. 2006, 8, 4023–
4026; (b) Igawa, K.; Sakita, K.; Murakami, M.; Tomooka, K. Synthesis 2008,
1641–1645.
19. A model transformation of epoxy alcohol 3 (76% ee) to olefin i (ꢁ78 to 0 °C, 3 h
then rt, overnight) afforded ii, which was 76% ee by 1H NMR spectroscopy of