3956
G. Barta-Szalai et al. / Bioorg. Med. Chem. Lett. 14 (2004) 3953–3956
in the NMDA evoked Ca2þ assay. This improvement
was generally higher and included more derivatives than
in the case of the binding test. Even compounds with 4-
phenoxypiperidine (3c and 3f) had IC50 values lower
than 10 nM.
8. Zhou, Z.; Cai, S. X.; Whittemore, E. R.; Konkoy, C. S.;
Espitia, S. A.; Tran, M.; Rock, D. M.; Coughenour, L. L.;
Hawkinson, J. E.; Boxer, P. A.; Bigge, C. F.; Wise, L. D.;
Weber, E.; Woodward, R. M.; Keana, J. F. W. J. Med.
Chem. 1999, 42, 2993–3000.
9. Leibrock, J.; Prucher, H.; Rautenberg, W. Pharmazie
1997, 52, 479–480.
Several known NR2B selective antagonists have been
synthesised and tested in vivo in our formalin test (Table
1). Co-101,244, Ro-25,6981, CP-101,606 were inactive
after oral administration. Since the former two com-
pounds were potent given ip those have probably poor
oral bioavailability. CI-1041 and EMD 95885 had good
oral potency. Comparing oral efficacy of our com-
pounds with the examined NR2B selective compounds
of various structural families, we can conclude that
several oxamide structures have outstanding oral effi-
cacy with ED50 value below 1 mg/kg. It should be noted,
however that in vivo activities did not parallel those in
vitro. Of course, besides in vitro potency, there are
several other yet unexamined features that can modify
the in vivo observed effect, like oral bioavailability,
brain penetration, metabolic stability, etc.
10. Chenard, B. L.; Bordner, J.; Butler, T. W.; Chambers, L.
K.; Collins, M. A.; De Costa, D. L.; Ducat, M. F.;
Dumont, M. L.; Fox, C. B.; Mena, E. E.; Menniti, F. S.;
Nielsen, J.; Pagnozzi, M. J.; Richter, K. E. G.; Ronau, R.
T.; Shalaby, I. A.; Stemple, J. Z.; White, W. F. J. Med.
Chem. 1995, 38, 3138–3145.
11. Wright, J. L.; Kesten, S. R.; Upasani, R. B.; Lan, N. C.
PCT Int. Appl. WO2000000197-A1. 2000; Chem. Abstr.
2000, 132, 64255.
ꢀ
ꢀ
ꢀ
12. Borza, I.; Kolok, S.; Gere, A.; Agai-Csongor, E.; Agai, B.;
ꢀ
ꢀ
Tarkanyi, G.; Horvath, Cs.; Barta-Szalai, G.; Bozo, E.;
Kiss, Cs.; Bielik, A.; Nagy, J.; Farkas, S.; Domany, Gy.
ꢀ
ꢀ
ꢀ
ꢀ
Bioorg. Med. Chem. Lett. 2003, 13, 3859–3861.
13. Conformational analysis of 1 and 2 was performed by
Low-Mode search as implemented in MacroModel 6.0.
Calculation of electrostatic potentials was carried out by
MOLCAD in Sybyl 6.9.
14. Wright, J. L.; Gregory, T. F.; Kesten, S. R.; Boxer, P. A.;
Serpa, K. A.; Meltzer, L. T.; Wise, L. D. J. Med. Chem.
2000, 43, 3408–3419.
In summary, a series of new oxamide derivatives were
prepared and found to be potent and selective antago-
nists of the NR2B subtype of NMDA receptors. Their in
vitro activities were comparable with those of the most
potent literature compounds, while some representatives
of this class showed outstanding activity in vivo. Results
of detailed biological investigations will be published
under separate cover.
15. The IR, 1HNMR, 13C NMR and MS spectra for all
intermediates and final compounds were consistent with
the assigned structures. Purity of the samples was checked
by HPLC and HRMS analysis.
ꢀ
ꢀ
ꢀ
ꢀ
ꢀ ꢀ
16. Agai, B.; Nador, A.; Proszenyak, A.; Tarkanyi, G.; Faigl,
F. Tetrahedron 2003, 59, 7897–7900.
17. L’Italien, Y. J.; Campbell, A. United States Patent US
3,260,723, 1966; Chem. Abstr. 1966, 65, 10569a.
18. Mutel, V.; Buchy, D.; Klingelschmidt, A.; Messer, J.;
Bleuel, Z.; Kemp, J. A.; Richards, J. G. J. Neurochem.
1998, 70, 2147–2155.
References and notes
1. Loftis, J. M.; Janowsky, A. Pharm. Therap. 2003, 97, 55–
85.
19. Richards, J. G.; Messer, J.; Buchy, D.; Klingel-schmidt,
A.; Mutel, V. Br. J. Pharmacol. 1997, 120(Proc. Suppl.),
39.
2. Chazot, P. L. Curr. Med. Chem. 2004, 11, 389–396.
3. Boyce, S.; Wyatt, A.; Webb, J. K.; O’Donnell, R.; Mason,
G.; Rigby, M.; Sirinathsinghji, D.; Hill, R. G.; Rupniak,
N. M. J. Neuropharm. 1999, 38, 611–623.
4. Sang, C. N.; Weaver, J. J.; Jinga, L.; Wouden, J.;
Saltarelli, M. D. Program No 814.9. 2003 Abstract
Viewer/Itinerary Planner; Society for Neuroscience: Wash-
ington, DC, 2003. Online.
5. Chenard, B. L.; Menniti, F. S. Curr. Pharm. Des. 1999, 5,
381–404.
6. Nikam, S. S.; Meltzer, L. Curr. Pharm. Des. 2002, 8, 845–
855.
€
20. Nagy, J.; Boros, A.; Dezso, P.; Kolok, S.; Fodor, L.
Neurochem. Int. 2003, 43, 19–29.
21. Licking behaviour was counted 20–25 min after injection
of formalin into the hindpaw of mice pretreated orally
with test compounds suspended in 5% Tween-80,
except Ro-25,6981 and Co-101,244 that was given ip
Percentage inhibition was calculated for each dose and
the dose producing half-maximal effect (ED50) was
determined. Maximal inhibition ranged from 59% to
93%.
22. Hunskaar, S.; Fasmer, O. B.; Hole, K. J. Neurosci.
Methods 1985, 14, 69–76.
23. Chaplan, S. R.; Malmberg, A. B.; Yaksh, T. L.
J. Pharmacol. Exp. Ther. 1997, 280, 829–838.
7. Fischer, G.; Mutel, V.; Traube, G.; Malherbe, P.; Kew, J.
N. C.; Mohacsi, E.; Heitz, M. P.; Kemp, J. A. J. Pharma-
col. Exp. Ther. 1997, 283, 1285–1292.