2006
Y. Gu, D. Wang / Tetrahedron Letters 51 (2010) 2004–2006
for the oxidative cross-coupling of two arenes by PIFA.13b First, PIFA
coordinates with N-acetylindoles to form complex A, followed by
SET to generate radical cation intermediate B (Path a). Trapping
the intermediate B by anisoles followed by one electron transfer
and deprotonation leads to the coupling product 3. Another possible
way is that PIFA coordinates with anisole to form complex C firstly to
generate radical cation intermediate D, which is attacked by N-acet-
ylindoles to provide the coupling product 3 (Path b).
4. Jouclaa, L.; Djakovitcha, L. Adv. Synth. Catal. 2009, 351, 673.
5. Lane, B. S.; Brown, M. A.; Sames, D. J. Am. Chem. Soc. 2005, 127, 8050.
6. Zhang, Z.; Hu, Z.; Yu, Z.; Lei, P.; Chi, H.; Wang, Y.; He, R. Tetrahedron Lett. 2007,
48, 2415.
7. Cusati, G.; Djakovitch, L. Tetrahedron Lett. 2008, 49, 2499.
8. Bellina, F.; Benelli, F.; Rossi, R. J. Org. Chem. 2008, 73, 5529.
9. Phipps, R. J.; Grimster, N. P.; Gaunt, M. J. J. Am. Chem. Soc. 2008, 130, 8172.
10. (a) Stuart, D. R.; Fagnou, K. Science 2007, 316, 1172; (b) Stuart, D. R.; Villemure,
E.; Fagnou, K. J. Am. Chem. Soc. 2007, 129, 12072.
11. For recent reviews of hypervalent iodine chemistry, see: (a) Uyanik, M.;
Ishihara, K. Chem. Commun. 2009, 2086; (b) Dohi, T.; Kita, Y. Chem. Commun.
2009, 2073; (c) Zhdankin, V. V.; Stang, P. J. Chem. Rev. 2008, 108, 5299; (d)
Ochiai, M.; Miyamoto, K. Eur. J. Org. Chem. 2008, 4229; (e) Zhdankin, V. V. Sci.
Synth. 2007, 31a, 161. Chapter 31.4.1; (f) Wirth, T. Angew. Chem., Int. Ed. 2005,
44, 3656; (g) Moriarty, R. M. J. Org. Chem. 2005, 70, 2893; (h) Tohma, H.; Kita, Y.
Adv. Synth. Catal. 2004, 346, 111; (i) Hypervalent Iodine Chemistry; Wirth, T., Ed.;
Springer: Berlin, 2003; (j) Zhdankin, V. V.; Stang, P. J. Chem. Rev. 2002, 102,
2523.
12. For recent examples of hypervalent iodine reagents in oxidative C–C bonds
formation reaction, see: (a) Liang, J.; Chen, J.; Du, F.; Zeng, X.; Li, L.; Zhang, H.
Org. Lett. 2009, 11, 2820; (b) Yu, W.; Du, Y.; Zhao, K. Org. Lett. 2009, 11, 2417; (c)
Ye, Y.; Zheng, C.; Fan, R. Org. Lett. 2009, 11, 3156; (d) Dohi, T.; Minamitsuji, Y.;
Maruyama, A.; Hirose, S.; Kita, Y. Org. Lett. 2008, 10, 3559; (e) Dohi, T.;
Morimoto, K.; Takenaga, N.; Goto, A.; Maruyama, A.; Kiyono, Y.; Tohma, H.;
Kita, Y. J. Org. Chem. 2007, 72, 109; (f) Dohi, T.; Morimoto, K.; Maruyama, A.;
Kita, Y. Org. Lett. 2006, 8, 2007; (g) Dohi, T.; Morimoto, K.; Kiyono, Y.;
Maruyama, A.; Tohma, H.; Kita, Y. Chem. Commun. 2005, 2930; (h) Dohi, T.;
Morimoto, K.; Kiyono, Y.; Tohma, H.; Kita, Y. Org. Lett. 2005, 7, 537; (i)
Hamamoto, H.; Anikumar, G.; Tohma, H.; Kita, Y. Chem. Commun. 2002, 450; (j)
Tohma, H.; Iwata, M.; Maegawa, T.; Kita, Y. Tetrahedron Lett. 2002, 43, 9241; (k)
Arisawa, M.; Ramesh, N. G.; Nakajima, M.; Tohma, H.; Kita, Y. J. Org. Chem.
2001, 66, 59.
In conclusion, we have developed a novel method for the direct
oxidative cross-coupling of N-acetylindoles with anisoles to pro-
vide C-3 arylindoles using PIFA as an oxidant. The attractive fea-
tures of these reactions are
a metal-free procedure, high
regioselectivity and mild conditions. Further work on hypervalent
iodine-mediated cross-coupling reactions of other heterocyclic
compounds with arenes is underway in our laboratory.
Acknowledgements
We gratefully acknowledge the National Natural Science Foun-
dation of China (No. 20602033) and National Basic Research Pro-
gram of China (2006CB922001) for financial support.
References and notes
1. (a) Pozharskii, A. F. Handbook of Heterocyclic Chemistry; Pergamon: Oxford,
2000. Chapter 4; (b) McKay, M. J.; Carroll, A. R.; Quinn, R. J.; Hooper, J. N. A. J.
Nat. Prod. 2002, 65, 595; (c) Segraves, N. L.; Crews, P. J. Nat. Prod. 2005, 68, 1484.
2. (a) Colletti, S. L.; Li, C.; Fisher, M. H.; Wyvratt, M. J.; Meinke, P. T. Tetrahedron
Lett. 2000, 41, 7825; (b) Chu, L.; Hutchins, J. E.; Weber, A. E.; Lo, J.-L.; Yang, Y.-
T.; Cheng, K.; Smith, R. G.; Fisher, M. H.; Wyvratt, M. J.; Goulet, M. T. Bioorg.
Med. Chem. Lett. 2001, 11, 509; (c) Stevenson, G. I.; Smith, A. L.; Lewis, S.;
Michie, S. G.; Neduvelil, J. G.; Patel, S.; Marwood, R.; Patel, S.; Castro, J. L. Bioorg.
Med. Chem. Lett. 2000, 10, 2697.
3. For recent reviews on the synthesis of indoles, see: (a) Ackermann, L. Synlett
2007, 507; (b) Humphrey, G. R.; Kuethe, J. T. Chem. Rev. 2006, 106, 2875; (c)
Cacchi, S.; Fabrizi, G. Chem. Rev. 2005, 105, 2873; (d) Gribble, G. W. J. Chem. Soc.,
Perkin Trans. 2000, 1, 1045.
13. (a) Kita, Y.; Morimoto, K.; Ito, M.; Ogawa, C.; Goto, A.; Dohi, T. J. Am. Chem. Soc.
2009, 131, 1668; (b) Dohi, T.; Ito, M.; Morimoto, K.; Iwata, M.; Kita, Y. Angew.
Chem., Int. Ed. 2008, 47, 1301; (c) Jean, A.; Cantat, J.; Bérard, D.; Bouchu, D.;
Canesi, S. Org. Lett. 2007, 9, 2553.
14. Lewis acid BF3ꢀOEt2 usually improved the PIFA-mediated oxidative coupling
reaction. It is believed that trifluoroacetoxy ligand of PIFA might coordinate to
BF3ꢀOEt2 and generate a reactive cationic iodine(III) intermediate. See Ref. 13b
and references cited therein.
15. Most of starting 2-methoxycarbonylanisole (2g) was recovered and N-
acetylindole (1a) was slowly decomposed during the extended reaction
times or at the elevated temperatures.