in both the crystalline and solution states,11 though the
formation of excimers in the crystalline state is relatively
common.12
Crystal engineering of CT complex is a very interesting
research field, because an exquisite packing of D and A can
be readily achieved in the crystalline state.13 We think of
idea that we apply the crystal engineering of CT complex to
preparing luminescent organic crystals, in which a face-to-
face alignment of D and A forms emissive exciplex.
Therefore, in this work, we designed and synthesized a new
dyad, 1,4-dicyano-2-[4′-(N,N-dimethylamino)benzyloxy]-
methylnaphthalene (1, Figure 1), and studied its optical
Figure 3. Photographs of DCMN (a and c) and 1 (b, d, and e) in
cyclohexane and in crystals under natural light (top) and under light
at 365 nm (bottom).
spectrum of 1 in cyclohexane (Figure 4, black and bold) is
virtually the sum of the spectra of DCMN (black and solid)
and DMT (black broken line) and exhibits intense absorptions
at 250-350 nm and weak absorptions at 350-400 nm.14
These findings indicate that an intramolecular CT complex
of 1 is hardly formed in cyclohexane, even though the strong
acceptor DCMN is interlinked with the strong donor DMT.
When a cyclohexane solution of DCMN (5.0 × 10-5 mol/
L) is excited with 320-nm light, blue fluorescence is observed
at ca. 350 nm (Figure 3a, bottom, and Figure 4, blue) with
a quantum yield (Φf) of 0.29 and a fluorescence lifetime
(τfMONO) of 3.7 ns. When DMT is added to the DCMN
solution ([DMT] ) 5.0 × 10-3 mol/L), a weak emission band
corresponding to an intermolecular exciplex between DCMN
and DMT is observed at 526 nm along with an intense
monomer emission from the singlet excited DCMN at ca.
350 nm. On the other hand, excitation of a dilute cyclohexane
solution of dyad 1 (5.0 × 10-5 mol/L) at 320 nm leads to
Figure 1. Chemical structures of DCMN, 1, and DMT.
properties in solution and the crystalline or solid states. In
this paper, we present the results of studies that show that
an intermolecular exciplex is formed in crystals of 1 while,
as expected, dyad 1 forms an intramolecular exciplex in
cyclohexane solution (Figure 2). In addition, observations
significantly decreased emission from the DCMN moiety
MONO
(λem
) 354 nm, τfMONO ) 3.7 ns) and orange fluores-
EX
cence (λem ) 550 nm, Φf ) 0.05, τfEX ) 13.7 ns; Figure
3b, bottom, and Figure 4, red). The fluorescence, which is
(6) For example, see: (a) Zhu, J.; Li, W.; Han, L.; Chu, B.; Zhang, G.;
Yang, D.; Chen, Y.; Su, Z.; Wang, J.; Wu, S.; Tsuboi, T. Opt. Lett. 2009,
34, 2946–2948. (b) Benson-Smith, J.; Wilson, J.; Dyer-Smith, C.; Nelson,
J.; Mouri, K.; Yamaguchi, S.; Murata, H. J. Phys. Chem. B 2009, 113,
7794–7799. (c) Si, Z.; Li, B.; Hong, Z.; Li, W.; Si, Z.; Li, J.; Liu, S. J.
Phys. Chem. C 2008, 112, 3920–3925.
Figure 2. Schematic for the formation of CT complexes and
intermolecular and intramolecular exciplexes of 1.
(7) (a) Ashizawa, M.; Fukaya, A.; Kato, R.; Yamada, K.; Hara, K.;
Takeya, J. Chem. Mater. 2008, 20, 4883–4890. (b) Mizobe, Y.; Miyata,
M.; Hisaki, I.; Hasegawa, Y.; Tohnai, N. Org. Lett. 2006, 8, 4295–4298.
(c) Nakanotani, H.; Kabe, R.; Yahiro, M.; Adachi, C.; Takenobu, T.; Iwasa,
Y. Appl. Phys. Express. 2008, 1, 091801-1-091801-3. (d) Kitamura, M.;
Arakawa, Y. J. Phys.: Condens. Matter 2008, 20, 184011 (16 pp).
(8) Hirayama, F. J. Chem. Phys. 1965, 42, 3163–3177.
made in this effort clearly demonstrate that the intermolecular
exciplex of 1 in the crystalline state results directly from
excitation of a ground-state intermolecular CT.
As shown in Figure 3a,b, cyclohexane solutions of 1 and
DCMN are colorless under natural light. The absorption
(9) (a) Goncalves, A. M. P. Prog. Solid State Chem. 1980, 13, 1–88.
(b) Ludmer, Z. Mol. Cryst. Liq. Cryst. 1978, 45, 71–81. (c) Matsuzawa, S.;
Lamotte, M.; Garrigues, P.; Shimizu, Y. J. Phys. Chem. 1994, 98, 7832–
7836. (d) Norris, K.; Gray, P.; Craig, D. P.; Mallett, C. P.; Markey, B. R.
Chem. Phys. 1983, 79, 9–19. (e) Omary, M. A.; Patterson, H. H. J. Am.
Chem. Soc. 1998, 120, 7696–7705. (f) Farid, S.; Martic, P. A.; Daly, R. C.;
Thompson, D. R.; Specht, D. P.; Hartman, S. E.; Williams, J. L. R. Pure
Appl. Chem. 1979, 51, 241–259. (g) Saeva, F.; Luss, H.; Martic, P. J. Chem.
Soc., Chem. Commun. 1989, 1477–1478.
(4) (a) Okada, T.; Fujita, T.; Kubota, M.; Masaki, S.; Mataga, N. Chem.
Phys. Lett. 1972, 14, 563–568. (b) Luo, X.-J.; Beddard, G. S.; Porter, G.
J. Chem. Soc., Faraday Trans. 1 1982, 78, 3467–3476. (c) Shou, H.; Alfano,
J. C.; Dantzig, N. A.; Levy, D. H. J. Chem. Phys. 1991, 95, 711–713. (d)
Benten, H.; Ohkita, H.; Ito, S.; Yamamoto, M.; Tohta, Y.; Tani, K. Bull.
Chem. Soc. Jpn. 2004, 77, 393–399. (e) Lauteslager, X. Y.; Stokkum,
I. H. M.; Ramesdonk, H. J.; Brouwer, A. M.; Verhoeven, J. W. J. Phys.
Chem. A 1999, 103, 653–659.
(10) Becker, H.-D.; Sandros, K. Chem. Phys. Lett. 1978, 55, 498.
(11) Bencini, A.; Berni, E.; Bianchi, A.; Fornasari, P.; Giorgi, C.; Lima,
J. C.; Lodeiro, C.; Melo, M. J.; Melo, J. S.; Parola, F. P.; Pina, J.; Valtancoli,
B. Dalton Trans. 2004, 2180.
(5) (a) Masaki, S.; Okada, T.; Mataga, N.; Sakata, Y.; Misumi, S. Bull.
Chem. Soc. Jpn. 1976, 49, 1277–1283. (b) Crawford, M. K.; Wang, Y.;
Eisenthal, K. B. Chem. Phys. Lett. 1981, 79, 529–533. (c) Lewis, F. D.;
Cohen, B. E. J. Phys. Chem. 1994, 98, 10591–10597. (d) Haver, Ph. V.;
Helsen, N.; Depaemelaere, S.; Auweraer, M. V.; De Schryver, F. C. J. Am.
Chem. Soc. 1991, 113, 6849–6857. (e) Verhoeven, J. W.; Scherer, T.;
Willemse, R. J. Pure Appl. Chem. 1993, 65, 1717–1722. (f) Wang, H.;
Zhang, B. W.; Cao, Y. J. Photochem. Photobiol., A 1995, 92, 29–34.
(12) (a) Guinand, G.; Marsau, P.; Bouas-Laurent, H.; Castellan, A.;
Desvergne, J.-P.; Lamotte, M. Acta Crystallogr. C 1987, 43, 857–860. (b)
Cotrait, M.; Marsau, P.; Kessab, L.; Grelier, S.; Nourmamode, A.; Castellan,
A. Aust. J. Chem. 1994, 47, 423–431. (c) Vaya´, I.; Jime´nez, M. C.; Miranda,
M. A. Tetrahedron: Asymmetry 2005, 16, 2167–2171. (d) Sonoda, Y.; Goto,
M.; Tsuzuki, S.; Tamaoki, N. J. Phys. Chem. A 2007, 111, 13441–13451.
Org. Lett., Vol. 12, No. 9, 2010
1941