pubs.acs.org/joc
attracted much attention recently1 because such research
Highly Selective Ylide-Initiated Michael Addition/
Cyclization Reaction for Synthesis of Cyclohexadiene
Epoxide and Vinylcyclopropane Derivatives
not only maximizes the diverse utility of reactants but also
benefits the understanding of reaction mechanism. During
our previous research on this subject,2 we documented that
HMPA could switch the stereochemistry of the cyclopro-
panation reaction between telluronium allylides with R,β-
unsaturated esters and amides, providing a facile synthesis
of two geometrical isomers of vinylcyclopropane derivati-
ves.2b,c We also observed solvent-reversed enantioselect-
ivity in the Friedel-Crafts reaction of indole with arylidene
malonates catalyzed by trisoxazoline (TOX)-derived copper
complex2f and temperature-controlled diastereoselection in the
1,3-dipolar cycloaddition of nitrones with arylidene malonates.2d
In addition, we reported that 2H-chromenes and 4H-chro-
menes could be synthesized controllably from the same starting
material just by the choice of base via tetrahydrothiophene-
catalyzed ylide annulation reaction.2g
Ben-Hu Zhu,† Rui Zhou,† Jun-Cheng Zheng,‡
Xian-Ming Deng,‡ Xiu-Li Sun,‡ Qi Shen,*,† and
Yong Tang*,‡
†Key Laboratory of Organic Synthesis, Jiangsu Province,
College of Chemistry, Chemical Engineering and Materials
Science, Suzhou University, Suzhou 215123, P. R. China, and
‡Department State Key Laboratory of Organometallic
Chemistry, Shanghai Institute of Organic Chemistry 345
Lingling Lu, Shanghai 200032, P. R. China
Received February 21, 2010
Optically active cyclohexadiene epoxide and vinylcyclo-
propane derivatives are important subunits in a number of
biologically active compounds3 and also valuable synthetic
intermediates.4 Very recently, we developed a tandem reac-
tion of crotonate-derived sulfur ylide with R,β-unsaturated
ketone for the rapid construction of functionalized cyclo-
hexadiene epoxide derivatives.5 Further study revealed the
reaction profile between sulfonium salt 1 with R,β-unsatu-
rated ketone 2 could be switched to give rise to enantioen-
riched vinylcyclopropane.6 As part of our research in ylide
chemistry7 and tunable reaction, we wish to describe the
details about the aforementioned process.
On the basis of the reactions of camphor-derived sulfur
ylide with R,β-unsaturated ketone, highly efficient and
selective synthesis of optically active cyclohexadiene ep-
oxides and vinylcyclopropanes with excellent diastereo-
selectivities, moderate to high enantioselectivities, and
yields has been achieved.
(3) For recent reviews, see: (a) Henrick, C. A. Pyrethroids in Agrochemicals
from Natural Products; Godfrey, C. R. A., Ed.; Marcel Dekker: New York, 1995;
pp 147-213; (b) Krohn, K. Natural Products Derived from Naphthalenoid
Precursors by Oxidative Dimerization. In Progress in the Chemistry of Organic
Natural Products; Herz, W., Falk, H., Kirby, G. W., Moore, R. E., Tamm, C., Eds.;
Springer: New York, 2003; Vol. 85, p 1. (c) Nara, F.; Tanaka, M.; Hosoya, T.;
Suzuki-Konagai, K.; Ogita, T. J. Antibiot. 1999, 52, 525. (d) Nara, F.; Tanaka,
M.; Masuda-Inoue, S.; Yamasato, Y.; Doi-Yoshioka, H.; Suzuki-Konagai, K.;
Kumakura, S.; Ogita, T. J. Antibiot. 1999, 52, 531. (e) Sala€un, J. Top. Curr.
Chem. 2000, 207, 1. (f) Faust, R. Angew. Chem., Int. Ed. 2001, 40, 2251.
(g) Pietruszka J. Chem. Rev. 2003, 103, 1051. (h) Wessjohann, L. A.; Brandt, W.
Chem. Rev. 2003, 103, 1625. (i) Marco-Contelles, J.; Molina, M. T.; Anjum, S.
Chem. Rev. 2004, 104, 2857.
The control of reaction pathways for selective synthesis of
different products from the same starting materials has
(4) For leading references, see: (a) Trost, B. M.; Chupak, L. S.; Lbbers, T.
J. Am. Chem. Soc. 1998, 120, 1732. (b) Block, O.; Klein, G.; Altenbach, H.-J.;
Brauer, D. J. J. Org. Chem. 2000, 65, 716. (c) Trost, B. M.; Yasukata, T.
J. Am. Chem. Soc. 2001, 123, 7162. (d) Lorbach, V.; Franke, D.; Nieger, M.;
(1) For reviews, see: (a) Sibi, M. P.; Liu, M. Curr. Org. Chem. 2001, 5,
719. (b) Zanoni, G.; Castronovo, F.; Franzini, M.; Vidari, G.; Giannini, E.
Chem. Soc. Rev. 2003, 32, 115. (c) Flanagan, S. P.; Guiry, P. J. J. Organomet.
Chem. 2006, 691, 2125. For leading references, see: (d) Evans, D. A.;
MacMillan, D. W. C.; Campos, K. R. J. Am. Chem. Soc. 1997, 119, 10859.
(e) Thorhauge, J.; Roberson, M.; Hazell, R. G.; Jørgensen, K. A. Chem.;
Eur. J. 2002, 8, 1888. (f) Luna, A. P.; Bonin, M.; Micouin, L.; Husson, H.-P.
J. Am. Chem. Soc. 2002, 124, 12098. (g) Arseniyadis, S.; Valleix, A.; Wagner,
A.; Mioskowski, C. Angew. Chem., Int. Ed. 2004, 43, 3314. (h) AIt-Haddou,
€
Muller, M. Chem. Commun. 2002, 494. (e) Andrey, O.; Camuzat-Dedenis, B.;
Chabaud, L.; Julienne, K.; Landais, Y.; Parra-Rapado, L.; Renaud, P.
Tetrahedron 2003, 59, 8543. (f) Shoji, M.; Imai, H.; Mukaida, M.; Sakai,
K.; Kakeya, H.; Osada, H.; Hayashi, Y. J. Org. Chem. 2005, 70, 79.
(g) Wender, P. A.; Gamber, G. G.; Hubbard, R. D.; Pham, S. M.; Zhang,
L. J. Am. Chem. Soc. 2005, 127, 2836. (h) Wegner, H. A.; De Meijere, A.;
Wender, P. A. J. Am. Chem. Soc. 2005, 127, 6530.
(5) Wang, Q.-G.; Deng, X.-M.; Zhu, B.-H.; Ye, L.-W.; Sun, X.-L.; Li,
C.-Y.; Zhu, C.-Y.; Shen, Q.; Tang, Y. J. Am. Chem. Soc. 2008, 130, 5408.
(6) Neff, J. R.; Gruetzmacher, R. R.; Nordlander, J. E. J. Org. Chem.
1974, 39, 3814.
(7) For reviews, see: (a) Tang, Y.; Ye, S.; Sun, X.-L. Synlett 2005, 2720.
(b) Sun, X.-L.; Tang, Y. Acc. Chem. Res. 2008, 41, 937. For recent examples,
see: (c) Ye, L.-W.; Sun, X.-L.; Wang, Q.-G.; Tang, Y. Angew. Chem., Int. Ed.
2007, 46, 5951. (d) Zhu, C.-Y.; Deng, X.-M.; Sun, X.-L.; Zheng, J.-C.; Tang,
Y. Chem. Commun. 2008, 738. (e) Zheng, J.-C.; Zhu, C.-Y.; Sun, X.-L.; Tang,
Y.; Dai, L.-X. J. Org. Chem. 2008, 73, 6909. (f) Wang, S. R.; Zhu, C.-Y.; Sun,
X.-L.; Tang, Y. J. Am. Chem. Soc. 2009, 131, 4192. (g) Zhu, C.-Y.; Cao,
X.-Y.; Zhu, B.-H.; Deng, C.; Sun, X.-L.; Wang, B.-Q.; Shen, Q.; Tang, Y.
Chem.;Eur. J. 2009, 15, 11465.
ꢀ
H.; Hoarau, O.; Cramailere, D.; Pezet, F.; Daran, J.-C.; Balavoine, G. G. A.
Chem.;Eur. J. 2004, 10, 699. (i) Trost, B. M.; Fettes, A.; Shireman, B. T.
J. Am. Chem. Soc. 2004, 126, 2660. (j) Yan, X.-X.; Peng, Q.; Li, Q.; Zhang,
K.; Yao, J.; Hou, X.-L.; Wu, Y.-D. J. Am. Chem. Soc. 2008, 130, 14362.
(2) (a) Tang, Y.; Huang, Y.-Z.; Dai, L.-X.; Chi, Z.-F.; Shi, L.-P. J. Org.
Chem. 1996, 61, 5762. (b) Ye, S.; Yuan, L.; Huang, Z.-Z.; Tang, Y.; Dai,
L.-X. J. Org. Chem. 2000, 65, 6257. (c) Liao, W.-W.; Li, K.; Tang, Y. J. Am.
Chem. Soc. 2003, 125, 13030. (d) Huang, Z.-Z.; Kang, Y.-B.; Zhou, J.; Ye,
M.-C.; Tang, Y. Org. Lett. 2004, 6, 1677. (e) Zhou, J.; Tang, Y. Chem.
Commun. 2004, 432. (f) Zhou, J.; Ye, M.-C.; Huang, Z.-Z.; Tang, Y. J. Org.
Chem. 2004, 69, 1309. (g) Ye, L.-W.; Sun, X.-L.; Zhu, C.-Y.; Tang, Y. Org.
Lett. 2006, 8, 3853.
3454 J. Org. Chem. 2010, 75, 3454–3457
Published on Web 04/13/2010
DOI: 10.1021/jo100306z
r
2010 American Chemical Society