aldehyde peak at 15% 1, a material with 25% 1 does display
an aldehyde peak at 197 ppm. Importantly, nitrogen adsorption
analysis of the material following ozonolysis demonstrated
that the ordered mesopore structure was unaffected by this
treatment (see ESIw). The BET surface area increased slightly
from 282 m2 gꢀ1 to 345 m2 gꢀ1 while the pore dimensions
remain largely unaltered. This method demonstrates an ability
to introduce a uniform reactivity to periodic mesoporous
organosilica without pore reductions.
In summary, novel periodic mesoporous organosilica
precursors have been synthesized containing both a functional
and a structural component. The degree of homogeneity of the
structural component was assessed from HAADF TEM
images in tandem with EDX spectra. Reaction of the materials
with ozone can be carried out without loss of mesoscale order,
thanks to the presence of the structural units, while permitting
the introduction of a well distributed, highly useful aldehyde
functionality throughout the material. Further efforts to
employ this group in subsequent transformations are underway.
The authors would like to thank Dr A. El Kadib for his
contributions.
+
Fig. 2 HAADF images of a mixed sample of (a) PMO-1/3H -Os and
(b) control particles. Brightest areas indicate the presence of Os atoms.
The insets (c) and (d) are EDX spectra showing the presence of Os in
(a), but not in (b).
Distinct Os M lines can be found at 1.96 keV overlapping
slightly with Si K lines. Deconvolution of the peaks confirmed
that the ratio of peak intensity of Os M to Si K was
consistent in all locations tested. This supports a homogeneous
distribution of the stilbene component within the organosilica
material.
Notes and references
z The sampling volume of micro-Raman is sufficient to penetrate well
into the porous mesostructure.
1 S. Inagaki, S. Guan, Y. Fukushima, T. Ohsuna and O. Terasaki,
J. Am. Chem. Soc., 1999, 121, 9611; B. J. Melde, B. T. Holland,
C. F. Blanford and A. Stein, Chem. Mater., 1999, 11, 3302;
T. Asefa, M. J. MacLachlan, N. Coombs and G. A. Ozin, Nature,
1999, 402, 867.
As a test for determining the accessibility of the functional
+
monomers within the material, PMO-1/3H was subjected to
ozonolysis conditions at ꢀ78 1C, followed by a reductive
workup with Me2S. This procedure is known to cleave similar
olefins, resulting in two aryl aldehydes.15 Infrared spectro-
scopy supported the effectiveness of this reaction as a new
band appeared at 1700 cmꢀ1, which is diagnostic of an
aromatic aldehyde. Furthermore, this treatment appeared to
completely oxidize the olefin of 4 as determined via confocal
micro-Raman spectroscopy (Fig. 3). The peaks at 1632 cmꢀ1
2 W. J. Hunks and G. A. Ozin, J. Mater. Chem., 2005, 15, 3716;
F. Hoffmann, M. Cornelius, J. Morell and M. Froba, Angew.
¨
Chem., Int. Ed., 2005, 4, 3216; M. P. Kapoor and S. Inagaki, Bull.
Chem. Soc. Jpn., 2006, 79, 1463.
3 S. Inagaki, S. Guan, T. Ohsuna and O. Terasaki, Nature, 2002,
416, 304; S. Fujita and S. Inagaki, Chem. Mater., 2008, 20, 891;
K. Nakajima, I. Tomita, M. Hara, S. Hayashi, K. Domen and
J. N. Kondo, Adv. Mater., 2005, 17, 1839; C. M. Li, J. Yang,
X. Shi, J. Liu and Q. H. Yang, Microporous Mesoporous Mater.,
(CQCST) and 1196 cmꢀ1 (C–XST 16 attributable to the stilbene
)
2007, 98, 220; M. Cornelius, F. Hoffmann and M. Froba, Chem.
¨
moiety are absent after ozonolysis, while a carbonyl stretch at
1700 cmꢀ1 appears. This indicates that all surface and pore
olefins present in the material have been modified.z Although
CP MAS 13C NMR was not sensitive enough to observe the
Mater., 2005, 17, 6674; T. Asefa, M. Kruk, M. J. MacLachlan,
N. Combs, H. Grondey, M. Jaroniec and G. A. Ozin, J. Am. Chem.
Soc., 2001, 123, 8520.
4 S. MacQuarrie, M. Thompson, A. Blanc, N. Mosey, R. P. Lemieux
and C. M. Crudden, J. Am. Chem. Soc., 2008, 130, 14099.
5 X. Ding, X. Lv, B. Hui, Z. Chen, M. Xiao, B. Guo and W. Tang,
Tetrahedron Lett., 2006, 47, 2921.
6 H.-K. Chang, S. Datta, A. Das, A. Odedra and R.-S. Liu, Angew.
Chem., Int. Ed., 2007, 46, 4744.
7 M. Murata, M. Ishikura, M. Nagata, S. Watanabe and
Y. Masuda, Org. Lett., 2002, 4, 1843.
8 H. Hopf, J. Hucker and L. Ernst, Eur. J. Org. Chem., 2007, 1891;
T. Bosanac and C. S. Wilcox, Org. Lett., 2004, 6, 2321.
9 W. J. Hunks and G. A. Ozin, Chem. Commun., 2004,
2426.
10 M. P. Kapoor, Q. Yang and S. Inagaki, J. Am. Chem. Soc., 2002,
124, 15176.
11 Y. Goto and S. Inagaki, Chem. Commun., 2002, 2410.
12 K. S. W. Sing, D. H. Everett, R. A. W. Haul, L. Moscou,
R. A. Pierotti, J. Rouquerol and T. Siemieniewska, Pure Appl.
Chem., 1985, 57, 603.
13 G. Cerveau, S. Chappellet, R. J. P. Corriu, B. Dabiens and
J. L. Bideau, Organometallics, 2002, 21, 1560.
14 Y. Yang and A. Sayari, Chem. Mater., 2008, 20, 2980.
15 D. Enders and O. Niemeier, Synlett, 2004, 2111.
16 X here represents trans-stilbene, less one aromatic ring.
+
+
Fig. 3 Raman spectra of (a) PMO-1/3H and (b) PMO-1/3H -O3
J. F. Arenas, I. L. Tocon, J. C. Otero and J. I. Marcos, J. Phys.
´
Chem., 1995, 99, 11392.
showing complete consumption of CQC bond at 1632 cmꢀ1
.
ꢁc
This journal is The Royal Society of Chemistry 2010
2102 | Chem. Commun., 2010, 46, 2100–2102