metric catalysis. As part of our ongoing research using N,N′-
dioxide compound as a structurally modified ligand,11 we
herein describe an enantioselective amination reaction of
N-acetyl enamides with azodicarboxylate catalyzed by chiral
Cu(OTf)2/N,N′-dioxide complex, giving the corresponding
adducts in excellent yields with high enantioselectivities.
A preliminary investigation12 revealed that Cu(OTf)2-N,N′-
dioxide L1 (Figure 1) could efficiently catalyze the amination
Table 1. Selected Results for the Optimization of Reaction
Conditionsa
entry
ligand
R
additive
yield (%)b
ee (%)c
1
2
3
4
5
6e
L1
L2
L3
L4
L5
L3
L3
L3
L3
L3
L3
L3
Et
Et
Et
Et
Et
Et
Et
Bn
Bn
Bn
Bn
Bn
64
61
51
22
78
99
66
48
88
88
38
95
56 (S)d
20 (R)
61 (S)
6 (S)
30 (S)
65 (S)
79 (S)
90 (S)d
89 (S)
91 (S)
61 (S)
75 (R)
7e f
,
8e f
,
9e f g
H2O
H2O/3 Å MS
3 Å MS
, ,
10e f h
, ,
Figure 1. N,N′-Dioxide ligands evaluated for this reaction.
11e f i
, ,
12e f h j
H2O/3 Å MS
, ,
,
a Unless otherwise noted, reactions were carried out with ligand (10
mol %), Cu(OTf)2 (10 mol %), 1a (0.1 mmol), and 2 (0.15 mmol) in THF
(0.4 mL) at rt for 24 h. b Isolated yield of the hydrolysis product.
c Determined by HPLC, using chiral AD-H column after hydrolysis.
d Absolute configuration was determined by comparison with the literature
data (refs 6 and 15a). e Ligand: Cu(OTf)2 ) 1:1.25. f Performed at 0 °C.
g H2O (3 µL) was added. h 3 Å MS (30 mg) and H2O (5 µL) were added.
i 3 Å MS (30 mg) was added. j 1b (0.1 mmol) was used as substrate.
of enamide, giving the corresponding product in 64% yield
with 56% ee (Table 1, entry 1). Subsequent intensive
screening of the chiral ligands disclosed the significant impact
of the amino acid backbone on the enantioselectivity (Table
1, entries 1-3). L-Ramipril acid-derived N,N′-dioxide L3 was
superior to L1 (derived from L-proline) and L2 (derived from
L-pipecolic acid) (Table 1, entry 3 vs entries 1 and 2). The
opposite configuration of the product obtained from L2
proved the decisive role of amino acid scaffold in determin-
ing the absolute stereochemical outcome of the reaction
(Table 1, entry 2). In addition, the amide moiety of the N,N′-
dioxide played an important role on the reactivity. Increasing
the steric hindrance on the ortho position of the aromatic
ring was favorable to achieve high yield (Table 1, entries 3
and 5 vs entry 4). It was considered that the introduction of
the bulky group at the ortho position led to a twisted
delocalization of the large conjugated system including the
aromatic ring, nitrogen, and the carbonyl group, which
affected the Lewis acidity of the central metal indirectly.
When a little excess of metal was used, the yield was
increased to 99% with a gentle increase of the enantiose-
lectivity (Table 1, entry 6). Decreasing the reaction temper-
ature to 0 °C improved the enantiomeric excess of the product
to 79% (Table 1, entry 7). When dibenzyl azodicarboxylate
was used as the electrophile, the enantioselectivity was
further increased to 90% ee (Table 1, entry 8).
(5) For reviews of R-amination, see: (a) Erdik, E. Tetrahedron 2004,
60, 8747. (b) Greck, C.; Drouillat, B.; Thomassigny, C. Eur. J. Org. Chem.
2004, 1377. (c) Janey, J. M. Angew. Chem., Int. Ed. 2005, 44, 4292. (d)
Na´jera, C.; Sansano, J. M. Chem. ReV. 2007, 107, 4584, and references
cited therein. For selected examples of amination of 1,3-dicarbonyl
compounds with dialkyl azodicarboxylate as nitrogen source, see: (e)
Marigo, M.; Juhl, K.; Jørgensen, K. A. Angew. Chem., Int. Ed. 2003, 42,
1367. (f) Pihko, P. M.; Pohjakallio, A. Synlett 2004, 2115. (g) Bernardi,
L.; Zhuang, W.; Jørgensen, K. A. J. Am. Chem. Soc. 2005, 127, 5772. (h)
Foltz, C.; Stecker, B.; Marconi, G.; Bellemin-Laponnaz, S.; Wadepohl, H.;
Gade, L. H. Chem. Commun. 2005, 5115. (i) Xu, X.; Yabuta, T.; Yuan, P.;
Takemoto, Y. Synlett 2006, 137. (j) Terada, M.; Nakano, M.; Ube, H. J. Am.
Chem. Soc. 2006, 128, 16044. (k) Kang, Y. K.; Kim, D. Y. Tetrahedron
`
Lett. 2006, 47, 4565. (l) Comelles, J.; Pericas, A.; Moreno-Man˜as, M.;
Vallribera, A.; Drudis-Sole´, G.; Lledos, A.; Parella, T.; Roglans, A.; Garc´ıa-
Granda, S.; Roces-Ferna´ndez, L. J. Org. Chem. 2007, 72, 2077. For selected
examples of amination of 2-oxindoles with dialkyl azodicarboxylate as
nitrogen source, see: (m) Cheng, L.; Liu, L.; Wang, D.; Chen, Y. J. Org.
Lett. 2009, 11, 3874. (n) Qian, Z. Q.; Zhou, F.; Du, T. P.; Wang, B. L.;
Ding, M.; Zhao, X. L.; Zhou, J. Chem. Commun. 2009, 6753. (o) Bui, T.;
Borregan, M.; Barbas, C. F., III J. Org. Chem. 2009, 74, 8935. (p) Mouri,
S.; Chen, Z.; Mitsunuma, H.; Furutachi, M.; Matsunaga, S.; Shibasaki, M.
J. Am. Chem. Soc. 2010, 132, 1255. For selected examples of other
substrates, see: (q) Juhl, K.; Jørgensen, K. A. J. Am. Chem. Soc. 2002,
124, 2420. (r) Chowdari, N. S.; Ramachary, D. B.; Barbas, C. F., III Org.
Lett. 2003, 5, 1685. (s) Saaby, S.; Bella, M.; Jørgensen, K. A. J. Am. Chem.
Soc. 2004, 126, 8120. (t) Ma, S.; Jiao, N.; Zheng, Z.; Ma, Z.; Lu, Z.; Ye,
L.; Deng, Y.; Chen, G. Org. Lett. 2004, 6, 2193. (u) Liu, X.; Li, H.; Deng,
L. Org. Lett. 2005, 7, 167. (v) Poulsen, T. B.; Alemparte, C.; Jørgensen,
K. A. J. Am. Chem. Soc. 2005, 127, 11614. (w) Bertelsen, S.; Marigo, M.;
Brandes, S.; Dine´r, P.; Jørgensen, K. A. J. Am. Chem. Soc. 2006, 128, 12973.
(x) Mashiko, T.; Kumagai, N.; Shibasaki, M. Org. Lett. 2008, 10, 2725.
(y) Mashiko, T.; Kumagai, N.; Shibasaki, M. J. Am. Chem. Soc. 2009, 131,
14990.
(9) Matsubara, R.; Doko, T.; Uetake, R.; Kobayashi, S. Angew. Chem.,
Int. Ed. 2007, 46, 3047.
(10) For reviews on chiral N-oxides in asymmetric catalysis, see: (a)
Chelucci, G.; Murineddu, G.; Pinna, G. A. Tetrahedron: Asymmetry 2004,
15, 1373. (b) Malkov, A. V.; Kocˇovský, P. Eur. J. Org. Chem. 2007, 29.
(11) For examples of our recent work, see: (a) Yang, X.; Zhou, X.; Lin,
L. L.; Chang, L.; Liu, X. H.; Feng, X. M. Angew. Chem., Int. Ed. 2008, 47,
7079. (b) Tan, C.; Liu, X. H.; Wang, L. W.; Wang, J.; Feng, X. M. Org.
Lett. 2008, 10, 5305. (c) Zhou, X.; Shang, D. J.; Zhang, Q.; Lin, L. L.; Liu,
X. H.; Feng, X. M. Org. Lett. 2009, 11, 1401. (d) Shang, D. J.; Liu, Y. L.;
Zhou, X.; Liu, X. H.; Feng, X. M. Chem.sEur. J. 2009, 15, 3678. (e) Liu,
Y. L.; Shang, D. J.; Zhou, X.; Zhu, Y.; Lin, L. L.; Liu, X. H.; Feng, X. M.
Org. Lett. 2010, 12, 180.
(6) Matsubara, R.; Kobayashi, S. Angew. Chem., Int. Ed. 2006, 45, 7993.
(7) For review, see: (a) Matsubara, R.; Kobayashi, S. Acc. Chem. Res.
2008, 41, 292. For other synthetic methods of enecarbamate, see: (b)
Fu¨rstner, A.; Brehm, C.; Cancho-Grande, Y. Org. Lett. 2001, 3, 3955. (c)
Wallace, D. J.; Klauber, D. J.; Chen, C.-y.; Volante, R. P. Org. Lett. 2003,
5, 4749. (d) Jiang, L.; Job, G. E.; Klapars, A.; Buchwald, S. L. Org. Lett.
2003, 5, 3667.
(12) Preliminary investigation of Lewis acid mainly focused on Cu(I)
and Cu(II), see the Supporting Information.
(8) Burk, M. J.; Casy, G.; Johnson, N. B. J. Org. Chem. 1998, 63, 6084.
Org. Lett., Vol. 12, No. 10, 2010
2215