M. Abe et al. / Tetrahedron Letters 51 (2010) 2071–2073
2073
3. Lange, C.; Nett, J. H.; Trumpower, B. L.; Hunte, C. EMBO J. 2001, 20, 6591–6600.
4. Shinzawa-Ito, K.; Aoyama, H.; Muramoto, K.; Terada, H.; Kurauchi, T.; Tadehara,
Y.; Yamasaki, A.; Sugimura, T.; Kurono, S.; Tsujimoto, K.; Mizushima, T.;
Yamashita, E.; Tsukihara, T.; Yoshikawa, S. EMBO J. 2007, 26, 1713–1725.
5. Kagan, V. E.; Tyurin, V. A.; Jiang, J.; Tyurina, Y. Y.; Ritov, V. B.; Amoscato, A. A.;
Osipov, A. N.; Belikova, N. A.; Kapralov, A. A.; Kini, V.; Vlasova, I. I.; Zhao, Q.;
Zou, M.; Di, P.; Svistunenko, D. A.; Kurnikov, I. V.; Borisenko, G. G. Nat. Chem.
Biol. 2005, 1, 223–232.
With half of the CL molecule (2) in hand, the whole molecule is
constructed as follows. The desired 1,2-diacyl-sn-glycerol (11b)
prepared by the method described above was reacted with N,N-
diisopropylmethylphosphonamidic chloride in the presence of DI-
PEA to give 1,2-diacyl-sn-glyceryl (N,N-diisopropylamino)phos-
phoramidite (3). To this intermediate was added
a CH2Cl2
6. Belikova, N. A.; Vladimirov, Y. A.; Osipov, A. N.; Kapralov, A. A.; Tyurin, V. A.;
Potapovich, M. V.; Basova, L. V.; Peterson, J.; Kurnikov, I. V.; Kagan, V. E.
Biochemistry 2006, 45, 4998–5009.
solution of 2 in the presence of 1H-tetrazole, followed by in situ
oxidation with nBu4NIO4 at À20 °C to afford a phosphotriester of
the CL precursor 13 in a moderate yield. Deprotection of the phos-
phate function in 13 has to be carried out prior to the removal of
the TBS group to avoid migration of the phosphate.9d Therefore,
the methyl groups in 13 were cleaved with sodium iodide
(2.5 equiv) in refluxing 2-butanone. Finally, removal of the TBS
group was accomplished by treating the resultant phosphate in
1.0 M HCl/THF/H2O (0.1:2:1, v/v) without any decomposition of
the double bonds, and converted into the ammonium salt 1 by
treatment with 0.1 M HCl followed by 25% ammonium hydrox-
ide.9c,13 For the synthesis of unsaturated CL [tetraoleoyl (C18:1)-
CL], Ahmad and co-workers used a levulinoyl group as a protection
group of the secondary alcohol of the glycerol bridge in the CL pre-
cursor,9a,d corresponding to 13 in our study, and performed depro-
tection of this group by hydrazinolysis14 with hydrazine in
pyridine. The application of this method, however, to the demethy-
lated 13 resulted in about 10% decomposition of the double bonds.
CL contains two 1,2-diacyl-sn-glycero-3-phosphoryl moieties
linked by a glycerol bridge, one phosphatidyl moiety is in pro-R
and the other is in pro-S position with respect to the central carbon
atom of the glycerol bridge. Obviously, the central carbon atom be-
comes a true chiral center if the two phosphatidyl residues contain
different fatty acids.
7. (a) Ramirez, F.; Ioannou, P. V.; Marecek, J. F.; Dodd, G. H.; Golding, B. T.
Tetrahedron 1977, 33, 599–608; (b) Keana, J. F. W.; Shimizu, M.; Jernstedt, K. K.
J. Org. Chem. 1986, 51, 2297–2299; (c) Duralski, A. A.; Spooner, P. J. R.; Rankin, S.
E.; Watts, A. Tetrahedron Lett. 1998, 39, 1607–1610; (d) Sedlak, E.; Panda, M.;
Dale, M. P.; Weintraub, S. T.; Robinson, N. C. Biochemistry 2006, 45, 746–754;
(e) Johns, M. K.; Yin, M. Y.; Conway, S. J.; Robinson, D. E. J. E.; Wong, L. S. M.;
Bamert, R.; Wettenhall, R. E. H.; Holmes, A. B. Org. Biomol. Chem. 2009, 7, 3691–
3697.
8. Hayakawa, Y.; Kataoka, M. J. Am. Chem. Soc. 1997, 119, 11758–11762.
9. (a) Krishna, U. M.; Ahmad, M. U.; Ahmad, I. Tetrahedron Lett. 2004, 45, 2077–
2079; (b) Lin, Z.; Ahmad, M. U.; Ali, S. M.; Ahmad, I. Tetrahedron Lett. 2004, 45,
6923–6925; (c) Lin, Z.; Ahmad, M. U.; Ali, S. M.; Ahmad, I. Lipids 2004, 39, 285–
290; (d) Krishna, U. M.; Ahmad, M. U.; Ali, S. M.; Ahmad, I. Lipids 2004, 39, 595–
600; (e) Ali, S. M.; Ahmad, M. U.; Koslosky, P.; Kasireddy, K.; Krishna, U. M.;
Ahmad, I. Tetrahedron 2006, 62, 6990–6997.
10. Jiang, G.; Xu, Y.; Prestwich, G. D. J. Org. Chem. 2006, 71, 934–939.
11. Rosseto, R.; Bibak, N.; DeOcampo, R.; Shah, T.; Gabrielian, A.; Hajdu, J. J. Org.
Chem. 2007, 72, 1691–1698.
12. Jiang, G.; Xu, Y.; Falguieres, T.; Gruenberg, J.; Prestwich, G. D. Org. Lett. 2005, 7,
3837–3840.
13. The data for 1: FTIR (ATR): 3211, 3009, 2925, 2854, 1739, 1457, 1377, 1211,
1064 cmÀ1 1H NMR (400 MHz, CD3OD) d 5.39–5.28 (m, 16H), 5.23 (m, 2H),
;
4.45 (dd, J = 12.0, 3.1 Hz, 2H), 4.19 (dd, J = 12.1, 6.9 Hz, 2H), 3.99 (dd, J = 5.5,
5.5 Hz, 4H), 3.95–3.88 (m, 5H), 3.60 (br s, 1H), 2.77 (t, J = 6.3 Hz, 8H), 2.34 (t,
J = 7.4 Hz, 4H), 2.31 (t, J = 7.4 Hz, 4H), 2.06 (dt, J = 7.0, 7.0 Hz, 16H), 1.68–1.56
(m, 8H), 1.43–1.26 (m, 56H), 0.91 (t, J = 6.9 Hz, 12H); 13C NMR (125 MHz,
CD3OD) d 173.50 (2C), 173.18 (2C), 129.64 (4C), 129.57 (4C), 127.82 (4C),
127.25 (4C), 78.16 (2C), 70.80, 66.32 (2C), 63.44 (2C), 62.43 (2C), 33.70 (2C),
33.55 (2C), 31.39 (4C), 29.48 (4C), 29.20 (4C), 29.13 (4C), 29.08 (4C), 28.99 (4C),
28.92 (4C), 26.90 (4C), 25.29 (4C), 24.71 (4C), 22.35 (4C), 13.19 (4C); 31P NMR
References and notes
(162 MHz, CD3OD)
d 0.94 (2P); HRMS (ESI) calcd for C81H141O17P2
(MÀ2NH3ÀH)À 1447.9649; found 1447.9594, calcd for C81H140O17P2
(MÀ2NH3À2H)2À 723.4788; found 723.4750.
1. Hatch, G. M. Biochem. Cell. Biol. 2004, 82, 99–112.
2. Schlame, M. J. Lipid Res. 2008, 49, 1607–1620.
14. Van Boom, J. H.; Burgers, P. M. J. Tetrahedron Lett. 1976, 17, 4875–4878.