33 F. Babudri, G. M. Farinola, F. Naso and R. Ragni, Chem. Commun.,
2007, 1003–1022.
34 K. Kasai and M. Fujita, Chem.–Eur. J., 2007, 13, 3089–3105.
35 J. Ruiz, M. D. Villa, V. Rodr´ıguez, N. Cutillas, C. Vicente, G. Lo´pez
and D. Bautista, Inorg. Chem., 2007, 46, 5448–5449.
36 M. Nishio, CrystEngComm, 2004, 6, 130–158.
37 J. Ruiz, J. Lorenzo, C. Vicente, G. Lo´pez, J. M. Lo´pez-De-Luzuriaga,
M. Monge, F. X. Avile´s, D. Bautista, V. Moreno and A. Laguna, Inorg.
Chem., 2008, 47, 6990–7001.
38 J. Ruiz, M. T. Mart´ınez, F. Florenciano, V. Rodr´ıguez, G. Lo´pez, J.
Pe´rez, P. A. Chaloner and P. B. Hitchcock, Inorg. Chem., 2003, 42,
3650–3661.
60 V. Brabec, V. Kleinwa¨chter, J. Butour and M. P. Johnson, Biophys.
Chem., 1990, 35, 129–141.
61 G. Cervantes, M. J. Prieto and V. Moreno, Met.-Based Drugs, 1997, 4,
9.
62 G. Cervantes, S. Marchal, M. J. Prieto, J. M. Pe´rez, V. M. Gonza´lez, C.
Alonso and V. Moreno, J. Inorg. Biochem., 1999, 77, 197–203.
63 J. Ruiz, C. Vicente, C. de Haro and D. Bautista, Dalton Trans., 2009,
5071–5073.
64 H. M. Ushay, T. D. Tullius and S. J. Lippard, Biochemistry, 1981, 20,
3744–3748.
65 S. Y. Loh, P. Mistry, L. R. Kelland, G. Abel and K. R. Harrap,
Br. J. Cancer, 1992, 66, 1109–1115.
39 J. Ruiz, M. T. Mart´ınez, F. Florenciano, V. Rodr´ıguez, G. Lo´pez, J.
Pe´rez, P. A. Chaloner and P. B. Hitchcock, Dalton Trans., 2004, 929–
932.
66 P. M. Goddard, R. M. Orr, M. R. Valenti, C. F. Barnard, B. A. Murrer,
L. R. Kelland and K. R. Harrap, Anticancer Res., 1996, 16, 33–38.
67 B. C. Behrens, T. C. Hamilton, H. Masuda, K. R. Grotzinger, J. Whang-
Peng, K. G. Louie, T. Knutsen, W. M. McKoy, R. C. Young and R. F.
Ozols, Cancer Res., 1987, 47, 414–418.
40 R. G. Parr and W. Yang, Density Functional Theory of Atoms and
Molecules, Oxford University Press, Oxford, 1989.
41 (a) P. K. Chattaraj, H. Lee and R. G. Parr, J. Am. Chem. Soc.,
1991, 113, 1855–1856; (b) A. Cedillo, P. K. Chattaraj and R. G. Parr,
Int. J. Quantum Chem., 2000, 77, 403–407.
42 R. G. Pearson, J. Am. Chem. Soc., 1963, 85, 3533–3539.
43 See for instance: A. Ponti and G. Molteni, Chem.–Eur. J., 2006, 12,
1156–1161; and references cited therein.
68 L. R. Kelland, C. F. J. Barnard, K. J. Mellish, M. Jones, P. M. Goddard,
M. Valenti, A. Bryant, B. A. Murrer and K. R. Harrap, Cancer Res.,
1994, 54, 5618–5622.
69 G. M. Sheldrick, SHELXS-97, SHELXL-97, Programs for Crystal
Structure Analysis, University of Go¨ttingen, Germany, 1997.
70 H. D. Flack, Acta Crystallogr., Sect. A: Found. Crystallogr., 1983, 39,
876–881.
71 K. Brandenburg, Diamond (Version 3.1f), Crystal and Molecular
Structure Visualization, Crystal Impact, K. Brandenburg and H. Putz
Gbr, Bonn (Germany) 2007, http://www.crystalimpact.com/diamond.
72 A. L. Spek, J. Appl. Crystallogr., 2003, 36, 7; PLATON—A Multipur-
pose Crystallographic Tool, Utrecht University, Utrecht, The Nether-
lands, A. L. Spek, (2008); Windows implementation, L. J. Farrugia,
University of Glasgow, Scotland, Version 40608 (2008).
73 X.-J. Yang, F. Drepper, B. Wu, W.-H. Sun, W. Haehnel and C. Janiak,
Dalton Trans., 2005, 256–267; and supplementary material therein.
74 L. J. Bartolottiand and K. Fluchick, in Reviews in Computational
Chemistry, ed. K. B. Lipkowitz and B. D. Boyd, VCH, New York,
1996, vol. 7, pp. 187–216.
44 R. G. Parr and W. Yang, J. Am. Chem. Soc., 1984, 106, 4049–
4050.
45 (a) S. Damoun, G. Van de Woude, F. Me´ndez and P. Geerlings, J. Phys.
Chem. A, 1997, 101, 886–893; (b) A. Ponti, J. Phys. Chem. A, 2000, 104,
8843–8846.
46 A. Espinosa, A. Frontera, R. Garc´ıa, M. A. Soler and A. Ta´rraga,
Arkivoc, 2005, (ix), 415–437.
47 R. G. Parr, L. V. Szentpaly and S. Liu, J. Am. Chem. Soc., 1999, 121,
1922–1924.
48 F. De Proft, W. Langenaeker and P. Geerlings, J. Phys. Chem., 1993, 97,
1826–1831; F. De Proft, S. Amira, K. Choho and P. Geerlings, J. Phys.
Chem., 1994, 98, 5227–5233; S. Kishnamurty and S. Pal, J. Phys. Chem.
A, 2000, 104, 7639–7645.
49 R. Parthasarathi, J. Padmanabhan, M. Elango, V. Subramanian and
P. K. Chattaraj, Chem. Phys. Lett., 2004, 394, 225–230.
50 The species 7 has been obtained by constrained optimization keeping
all donor atoms co-planar with the Pt centre and orthogonal angles
between the central C6F5 ligand and the peripheral ones.
51 The above parameters are directly related with kinetic aspects as they
concern the very first stage of the interaction between (pairs of) reactive
sites in both reactants. Consequently they reflect how much the system
is destabilized at the beginning of the interaction and therefore give an
insight about the energy content of the transition state (TS).
52 R. F. W. Bader, Atoms in Molecules: A Quantum Theory, Oxford
University Press, Oxford, 1990.
75 P. R. Rablen, J. W. Lockman and W. L. Jorgensen, J. Phys. Chem. A,
1998, 102, 3782–3797.
76 M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb,
J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C.
Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci,
M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M.
Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T.
Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E.
Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo,
R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi,
C. Pomelli, J. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P.
Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D.
Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K.
Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S.
Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz,
I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y.
Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. G. Johnson,
W. Chen, M. W. Wong, C. Gonzalez and J. A. Pople, GAUSSIAN 03
(Revision B.03), Gaussian, Inc., Wallingford, CT, 2004.
77 (a) Y. Zhao and D. G. Truhlar, J. Phys. Chem. A, 2004, 108, 6908–6918;
(b) Y. Zhao and D. G. Truhlar, J. Phys. Chem. A, 2005, 109, 5656–5667.
78 For instance, see: J. Mun˜iz, L. E. Sansores, A. Mart´ınez and R. Salcedo,
THEOCHEM, 2007, 820, 141–147.
53 J. M. Casas, J. Fornie´s, A. Mart´ın, V. M. Orera, A. G. Orpen, A. J.
Rueda, B. E. Diosdado and A. G. Orpen, Inorg. Chem., 1995, 34, 6514–
6519.
54 The antibonding nature of the HOMO has been corroborated by in
silico one-electron oxidation of this compound that yields the radical-
cation derivative 6·+ featuring a shorter Pt–Pt contact (dPt ◊ ◊ ◊ Pt = 2.845 A)
˚
with remarkable bonding character (WBI 0.185; r(rc) = 0.0437 e/ao3).
55 M. D. Meijer, A. W. Kleij, B. S. Williams, D. Ellis, M. Lutz, A. L.
Spek, G. P. M. van Klink and G. van Koten, Organometallics, 2002, 21,
264–271.
56 J. Ruiz, V. Rodr´ıguez, N. Cutillas, A. Hoffmann, A.-C. Chamayou, K.
Kazmierczak and C. Janiak, CrystEngComm, 2008, 10, 1928–1938.
57 H. Hosseini Monfared, J. Sanchiz, Z. Kalantari and C. Janiak, Inorg.
Chim. Acta, 2009, 362, 3791–3795.
58 A.-C. Chamayou, C. Biswas, A. Ghosh and C. Janiak, Acta Crystallogr.,
Sect. C: Cryst. Struct. Commun., 2009, 65, m311.
59 J. P. Macquet and J. L. Butour, Biochimie, 1978, 60, 901–914.
79 K. Wiberg, Tetrahedron, 1968, 24, 1083–1096.
80 (a) AIM2000 v. 2.0, designed by F. W. Biegler-Ko¨nig and J. Scho¨nbohm,
2002. Home page http://www.aim2000.de/F. Biegler-Ko¨nig, J.
Scho¨nbohm and D. J. Bayles, J. Comput. Chem., 2001, 22, 545–559;
(b) F. Biegler-Ko¨nig and J. Scho¨nbohm, J. Comput. Chem., 2002, 23,
1489–1494.
This journal is
The Royal Society of Chemistry 2010
Dalton Trans., 2010, 39, 3290–3301 | 3301
©