LETTER
Oxidation of Alkynes in Aqueous Media
1405
(6) Ahmad, S.; Iqbal, J. J. Chem. Soc., Chem. Commun. 1987,
692.
(7) (a) Wolt, S.; Ingold, C. F. J. Am. Chem. Soc. 1983, 105,
7755. (b) Gopal, H.; Gordon, A. J. Tetrahedron Lett. 1971,
12, 2941.
(8) Girard, P.; Counffignal, R.; Kagan, H. B. Tetrahedron Lett.
1981, 22, 3959.
(9) Yamashita, M.; Suemitsu, R. J. J. Chem. Soc., Chem.
Commun. 1977, 691.
Due to the synthetic versatility as well as to some reported
pharmaceutical application of glyoxal derivatives5,13 we
investigated the selenium-catalyzed oxidation of a series
of terminal alkynes 1g–m. In order to isolate the corre-
sponding hemiacethal 8–11 the crude mixtures were treat-
ed with different alcohols during the purification on silica
gel column.
The results reported in Table 3 indicate that the sterical
demand of the alcohol produces a negative influence on
the yields (entries 2–4) and that an optically pure alcohol
such as D-menthol does not produce a stereoselection dur-
ing the formation of the chiral hemiacetalic carbon lead-
ing to a 1:1 mixture of the possible diastereoisomers 10g
and 11g that cannot be separed by chromatography (entry
4).
(10) Iwahama, T.; Sakaguchi, S.; Nishiyama, Y.; Ishii, Y.
Tetrahedron Lett. 1995, 36, 1523.
(11) (a) Schroder, M. Chem. Rev. 1980, 80, 187. (b) Muller, P.;
Godey, J. Helv. Chim. Acta 1981, 64, 2531. (c) Chang,
C.-L.; Kumar, M. P.; Liu, R.-S. J. Org. Chem. 2004, 69,
2793. (d) Kashimura, S.; Murai, Y.; Washika, C.; Yoshihara,
D.; Kataoka, Y.; Murase, H.; Shono, T. Tetrahedron Lett.
1997, 38, 6717. (e) Crich, D.; Zou, Y. J. Org. Chem. 2005,
70, 3309. (f) Srinivasan, N. S.; Lee, D. G. J. Org. Chem.
1979, 44, 1574. (g) Dayan, S.; Ben-David, I.; Rozen, S.
J. Org. Chem. 2000, 65, 8816.
(12) (a) Santi, C.; Santoro, S.; Battistelli, B.; Testaferri, L.;
Tiecco, M. Eur. J. Org. Chem. 2008, 5387. (b) Santoro, S.;
Battistelli, B.; Testaferri, L.; Tiecco, M.; Santi, C. Eur. J.
Org. Chem. 2009, 4921.
(13) Fix, J. A.; Pogany, S. A. US 4, 440,740, 1984.
(14) In a typical procedure (PhSe)2 (0.1 mmol) and (NH4)2S2O8 (3
mmol) were suspended in H2O (5 mL) (or in a 3:1 mixure of
H2O–MeCN) and heated at 60 °C for 15 min. To the
resulting red-orange reaction mixture alkyne (1a–m, 1
mmol) was added and stirred for the time reported in
Tables 2 and 3. After the usual workup the crude was
purified by a silica gel chromatography using CH2Cl2 or a
mixture 1:99 R2OH–CH2Cl2 as eluent.
The compounds 8g–m, 9g, 10g, and 11g were isolated by
chromatography and were fully characterized by 1H NMR
and 13C NMR spectroscopy and resulted stable at 0 °C for
several days.
Some selected reactions (on 1a,g,m) were then carried out
in ‘on water’ conditions observing that when starting from
aryl-substituted alkynes results comparable to those ob-
served in the presence of the co-solvent MeCN can be ob-
tained.
In conclusion we reported an unprecedented oxidation of
alkynes promoted by ammonium persulfate in aqueous
medium stressing the catalytic effect of diphenyl dise-
lenide. The proposed procedure14 represents a convenient
way to prepare 1,2-unprotected dicarbonyl derivatives.
From terminal alkynes an interesting conversion of the re-
sulting a-ketoaldehydes to the corresponding hemiacetals
by treatment of the crude with silica gel and different al-
cohols has been observed.
All the compounds, after purification, were fully
characterized by GC-MS, 1H NMR, and 13C NMR
experiments. Physical and spectral data for the products not
previously described in literature are reported below.
2-Hydroxy-2-isopropoxy-1-phenylethanone (9g)
Oil. 1H NMR (400 MHz, CDCl3): d = 8.07 (d, 2 H, J = 7.5
Hz), 7.64 (t, 1 H, J = 7.5 Hz), 7.51 (t, 2 H, J = 7.5 Hz), 5.79
(d, 1 H, J = 8.0 Hz), 4.57 (d, 1 H, J = 8.0 Hz), 4.27 (sept, 1
H, J = 6.4 Hz), 1.35 (d, 3 H, J = 6.4 Hz), 1.28 (d, 3 H, J = 6.4
Hz) ppm. 13C NMR (100.62 MHz, CDCl3): d = 194.5, 134.9,
133.4, 130.0, 129.1, 90.9, 71.0, 24.2, 22.2 ppm. GC-MS:
m/z (relative intensity) = 192 (1), 121 (51), 105 (100), 77
(58), 51 (29).
Acknowledgment
Financial support from M.I.U.R. (Ministero Italiano Università e
Ricerca), National Projects PRIN2007 (Progetto di Ricerca d’Inter-
esse Nazionale), Consorzio CINMPIS, Bari (Consorzio Interuniver-
sitario Nazionale di Metodologie e Processi Innovativi di Sintesi),
University of Perugia, the Erasmus fellowship programme, the
grant ‘British–Italian’ from the British Council/CRUI are gratefully
acknowledged.
1-Hydroxy-1-methoxydecan-2-one (8h)
Oil. 1H NMR (400 MHz, CDCl3): d = 4.86 (d, 1 H, J = 9.2
Hz), 4.10 (d, 1 H, J = 9.0 Hz), 3.50 (s, 3 H), 2.78–2.71 (m, 1
H), 2.57–2.45 (m, 1 H), 1.71–1.62 (m, 2 H), 1.30–1.28 (m,
10 H), 0.89 (t, 3 H, J = 6.0 Hz) ppm. 13C NMR (100.62 MHz,
CDCl3): d = 206.1, 95.5, 55.5, 37.9, 35.5, 31.7, 29.2, 23.0,
14.0 ppm. GC-MS: m/z (relative intensity) = 202 (1), 141
(100), 123 (33) 71 (94), 57 (94).
References and Notes
(1) (a) Santi, C.; Tiecco, M.; Testaferri, L.; Tomassini, C.;
Santoro, S.; Bizzoca, G. Phosphorus, Sulfur Silicon Relat.
Elem. 2008, 183, 956. (b) Santoro, S.; Santi, C.; Sabatini,
M.; Testaferri, L.; Tiecco, M. Adv. Synth. Catal. 2008, 350,
2881.
(2) Freudendahl, D. M.; Santoro, S.; Shahzad, S. A.; Santi, C.;
Wirth, T. Angew. Chem. Int. Ed. 2009, 48, 8409.
(3) Tiecco, M.; Testaferri, L.; Tingoli, M.; Chianelli, D.;
Bartoli, D. J. Org. Chem. 1991, 56, 4529.
(4) (a) Hillis, L. R.; Ronald, R. C. J. Org. Chem. 1985, 50, 470.
(b) Mattay, J.; Runsik, J. J. Org. Chem. 1985, 50, 2815.
(5) Zuliani, V.; Cocconcelli, G.; Fantini, M.; Ghiron, C.; Rivara,
M. J. Org. Chem. 2007, 72, 4551; and references cited
therein.
1-Hydroxy-1-methoxyhexan-2-one (8i)
Oil. 1H NMR (400 MHz, CDCl3): d = 4.81 (d, 1 H, J = 9.0
Hz), 4.09 (d, 1 H, J = 9.0 Hz) 3.50 (s, 3 H), 2.78–2.65 (m, 1
H), 2.65–2.43 (m, 1 H), 1.65–1.53 (m, 2 H), 1.43–1.23 (m, 2
H), 0.90 (t, 3 H, J = 7.01 Hz) ppm. 13C NMR (100.6 MHz,
CDCl3): d = 206.1, 95.5, 55.5, 37.5, 25.1, 22.2, 13.7 ppm.
GC-MS: m/z (relative intensity) = 146 (13), 119 (10), 97
(36), 85 (60), 77 (50), 70 (55), 57 (100).
2-Hydroxy-2-methoxy-1-(4¢-bromophenyl)-ethanone (8l)
Mp 109–110 °C. 1H NMR (400 MHz, CDCl3): d = 7.95–
7.85 (m, 2 H), 7.65–7.55 (m, 2 H), 5.57 (d, 1 H, J = 9.0 Hz),
4.55 (d, 1 H, J = 9.0 Hz), 3.55 (s, 3 H) ppm. 13C NMR
(100.62 MHz, CDCl3): d = 193.6, 132.6, 131.8, 131.4, 130.4
Synlett 2010, No. 9, 1402–1406 © Thieme Stuttgart · New York