310
H.-J. Yen, G.-S. Liou / Organic Electronics 11 (2010) 299–310
(b) G. Zotti, A. Randi, S. Destri, W. Porzio, G. Schiavon, Chem. Mater.
For electrochromic switching studies, polymer films
14 (2002) 4550–4557.
[6] (a) A. Kimoto, K. Masachika, J.S. Cho, M. Higuchi, K. Yamamoto,
Chem. Mater. 16 (2004) 5706–5712;
were cast on ITO-coated glass slides in the same manner
as described above, and chronoamperometric and absor-
bance measurements were performed. While the films
were switched, the absorbance at the given wavelength
was monitored as a function of time with UV–vis-NIR spec-
troscopy (Fig. 8). The switching time was calculated at 90%
of the full switch because it is difficult to perceive any fur-
ther color change with naked eye beyond this point. The
(b) D. Sek, A. Iwan, B. Jarzabek, B. Kaczmarczyk, J. Kasperczyk, Z.
Mazurak, M. Domanski, K. Karon, M. Lapkowski, Macromolecules 41
(2008) 6653–6663.
[7] M.K. Choi, H.L. Kim, D.H. Suh, J. Appl. Polym. Sci. 101 (2006) 1228–
1233.
[8] (a) M. Cazacu, M. Marcu, A. Vlad, A. Tóth, C. Racles, J. Polym. Sci. Part
A: Polym. Chem. 41 (2003) 3169–3179;
(b) J.M. Adell, M.P. Alonso, J. Barberá, L. Oriol, M. Piñol, J.L. Serrano,
Polymer 44 (2003) 7829–7841.
[9] (a) H.H. Yang, Aromatic High Strength Fibers, Wiley, New York,
1989;
electrochromic coloration efficiency (g = dOD/Q) of PAMEs
Ia and IIa are calculated as 162 and 195 cm2/C, respectively
[18j]. After several coloring/bleaching cyclic scans, the
polymer films still exhibited good stability of electrochro-
mic characteristics.
(b) H.R. Kricheldorf, G. Schwarz, Handbook of Polymer Synthesis,
Part B, in: H.R. Kricheldorf (Ed.), Dekker, New York, 1992, pp. 1673–
1684.
[10] T. Yamamoto, Z.H. Zhou, T. Kanbara, M. Shimura, K. Kizu, T.
Maruyama, Y. Nakamura, T. Fukuda, B.L. Lee, N. Ooba, S. Tomaru, T.
Kurihara, T. Kaino, K. Kubota, S. Sasaki, J. Am. Chem. Soc. 118 (1996)
10389–10399.
4. Conclusion
[11] (a) C. Wang, S. Shieh, E. LeGoff, M.G. Kanatzidis, Macromolecules 29
(1996) 3147–3156;
(b) O. Thomas, O. Inganas, M.R. Anderson, Macromolecules 31
(1998) 2676–2678.
[12] D.J. Klein, D.A. Modarelli, F.W. Harris, Macromolecules 34 (2001)
2427–2437.
[13] C.L. Chiang, C.F. Shu, Chem. Mater. 14 (2002) 682–687.
[14] T. Matsumoto, F. Yamada, T. Kurosaki, Macromolecules 30 (1997)
3547–3552.
[15] N. Giuseppone, G. Fuks, J.M. Lehn, Chem. Eur. J. 12 (2006) 1723–
1735.
[16] (a) W. Fischer, F. Stelzer, F. Meghdadi, G. Leising, Synth. Met. 76
(1996) 201–204;
(b) M.S. Weaver, D.D.C. Bradley, Synth. Met. 83 (1996) 61–66.
[17] (a) T. Zhang, B. Toth, Anal. Chem. 72 (2000) 2533–2540;
(b) M. Oyama, K. Nozaki, S. Okazaki, Anal. Chem. 63 (1991) 1387–
1392;
Two series of blue and red electrochromic aromatic
PAMEs containing electroactive TPA moieties in the back-
bone were prepared from the potassium carbonate-medi-
ated nucleophilic substitution reaction of newly
azomethine–triphenylamine (AM–TPA)-based biphenol
monomers with difluoro compounds. Introduction of elec-
tron-donating TPA groups to the polymer main chain not
only afford high Tg and good thermal stability but also
leads to good solubility of the PAMEs. All the obtained
polymers revealed valuable electrochromic characteristics
such as high contrast in visible region and unique blue/
red electrochromic behavior, indicating the incorporation
of azomethine groups into TPA-based polymers is a new
approach for tuning the coloration changed.
(c) S.C. Creason, J. Wheeler, R.F. Nelson, J. Org. Chem. 37 (1972)
4440–4446;
(d) E.T. Seo, R.F. Nelson, J.M. Fritsch, L.S. Marcoux, D.W. Leedy, R.N.
Adams, J. Am. Chem. Soc. 88 (1966) 3498–3503.
[18] (a) S.H. Cheng, S.H. Hsiao, T.H. Su, G.S. Liou, Macromolecules 38
(2005) 307–316;
Acknowledgement
The authors are grateful to the National Science Council
of the Republic of China for its financial support of this
work.
(b) G.S. Liou, S.H. Hsiao, N.K. Huang, Y.L. Yang, Macromolecules 39
(2006) 5337–5346;
(c) G.S. Liou, S.H. Hsiao, W.C. Chen, H.J. Yen, Macromolecules 39
(2006) 6036–6045;
(d) G.S. Liou, H.Y. Lin, Y.L. Hsieh, Y.L. Yang, J. Polym. Sci. Part A:
Polym. Chem. 45 (2007) 4921–4932;
(e) G.S. Liou, C.W. Chang, Macromolecules 41 (2008) 1667–1674;
(f) S.H. Hsiao, G.S. Liou, Y.C. Kung, H.J. Yen, Macromolecules 41
(2008) 2800–2808;
(g) C.W. Chang, C.H. Chung, G.S. Liou, Macromolecules 41 (2008)
8441–8451;
(h) C.W. Chang, H.J. Yen, K.Y. Huang, J.M. Yeh, G.S. Liou, J. Polym. Sci.
Part A: Polym. Chem. 46 (2008) 7937–7949;
(i) G.S. Liou, H.J. Yen, M.C. Chiang, J. Polym. Sci. Part A: Polym. Chem.
47 (2009) 5378–5385;
References
[1] (a) P.M.S. Monk, R.J. Mortimer, D.R. Rosseinsky, Electrochromism:
Fundamentals and Applications, VCH, Weinheim, Germany, 1995;
(b) R.J. Mortimer, Chem. Soc. Rev. 26 (1997) 147–156;
(c) D.R. Rosseinsky, R.J. Mortimer, Adv. Mater. 13 (2001) 783–793;
(d) S. Liu, D.G. Kurth, H. Mohwald, D. Volkmer, Adv. Mater. 14 (2002)
225–228;
(e) T. Zhang, S. Liu, D.G. Kurth, C.F.J. Faul, Adv. Funct. Mater. 19
(2009) 642–652;
(f) A. Maier, A.R. Rabindranath, B. Tieke, Adv. Mater. 21 (2009) 959–
963.
(j) H.J. Yen, G.S. Liou, Chem. Mater. 21 (2009) 4062–4070.
[19] Y. Oishi, H. Takado, M. Yoneyama, M. Kakimoto, Y. Imai, J. Polym. Sci.
Part A: Polym. Chem. 28 (1990) 1763–1769.
[20] C.W. Chang, G.S. Liou, S.H. Hsiao, J. Mater. Chem. 17 (2007) 1007–
1015.
[2] C.J. Yang, S.A. Jenekhe, Chem. Mater. 3 (1991) 878–887.
[3] I.K. Spiliopoulos, J.A. Mikroyannidis, Macromolecules 29 (1996)
5313–5319.
[4] P. Cerrada, L. Oriol, M. Pinol, J.L. Serrano, I. Iribarren, S. Munoz
Guerra, Macromolecules 29 (1996) 2515–2523.
[5] (a) N. Kiriy, V. Bocharova, A. Kiriy, M. Stamm, F.C. Krebs, H.J. Adler,
Chem. Mater. 16 (2004) 4765–4771;
[21] J.L. Hedrick, R. Twieg, Macromolecules 25 (1992) 2021–2025.
_
[22] I. Kaya, S. Koyuncu, S. Çulhaog˘lu, Polymer 49 (2008) 703–714.
[23] T.X. Su, S.H. Hsiao, G.S. Liou, J. Polym. Sci. Part A: Polym. Chem. 43
(2005) 2085–2098.