1224
D. Beattie et al. / Bioorg. Med. Chem. Lett. 20 (2010) 1219–1224
3. (a) Haskó, G.; Pacher, P. J. Leukocyte Biol. 2008, 83, 447; (b) Palmer, T. M.;
Table 2
Trevethick, M. A. Br. J. Pharmacol. 2008, 153, S27.
Comparison of the inhibition of TNF-
a
release in rat and human LPS stimulated PBMC
4. vanden Berg, M.; Hylkema, M. N.; Versluis, M.; Postma, D. S. Drugs R D 2007, 8,
13.
assays
Compound
PBMC IC50 (nM)
5. (a) Bonneau, O.; Wyss, D.; Ferretti, S.; Blaydon, C.; Stevenson, C. S.; Trifilieff, A.
Am. J. Physiol. Lung Cell Mol. Physiol. 2006, 290, L1036; (b) Fozard, J. R.; Ellis, K.
M.; Villela Dantas, M. F.; Tigani, B.; Mazzoni, L. Eur. J. Pharmacol. 2002, 438, 183.
6. Trevethick, M. A.; Mantell, S. J.; Stuart, E. F.; Barnard, A.; Wright, K. N.; Yeadon,
M. Br. J. Pharmacol. 2008, 155, 463.
7. (a) Mantell, S. J.; Stephenson, P. T.; Monaghan, S. M.; Maw, G. N.; Trevethick, M.
A.; Yeadon, M.; Walker, D. K.; Selby, M. D.; Batchelor, D. V.; Rozze, S.;
Chavaroche, H.; Lemaitre, A.; Wright, K. N.; Whitlock, L.; Stuart, E. F.; Wright, P.
A.; Macintyre, F. Bioorg. Med. Chem. Lett. 2009, 19, 4471; (b) Mantell, S. J.;
Stephenson, P. T.; Monaghan, S. M.; Maw, G. N.; Trevethick, M. A.; Yeadon, M.;
Keir, R. F.; Walker, D. K.; Jones, R. M.; Selby, M. D.; Batchelor, D. V.; Rozze, S.;
Chavaroche, H.; Hobson, T. J.; Dodd, P. G.; Lemaitre, A.; Wright, K. N.; Stuart, E.
F. Bioorg. Med. Chem. Lett. 2008, 18, 1284; (c) Luijk, B.; vanden Berge, M.;
Kerstjens, H. A. M.; Postma, D. S.; Cass, L.; Sabin, A.; Lammers, J.-W. J. Allergy
2008, 63, 75.
Human
Rat
NECA
CGS21680
GW328267
17
18
32
40
58
1.3
4.7
5.9
21
187
83
2.9
255
458
3591
All data are expressed as means from 2 to 5 separate experiments.
types.3 In contrast, reproducing these A2A responses in the equiva-
lent inflammatory cell types of lower species was found to be prob-
lematic. After reviewing several test systems an equivalent
adenosine A2A dependant response was established for the inhibi-
tion of the LPS induced release of tumour necrosis factor alpha
8. Diniz, C.; Borges, F.; Santana, L.; Uriarte, E.; Oliveira, J. M. A.; Gonçalves, J.; Fresco,
P. Curr. Pharm. Des. 2008, 14, 1968.
9. (a) Cristalli, G.; Eleuteri, A.; Vittori, S.; Volpini, R.; Lohse, M. J.; Klotz, K.-N. J.
Med. Chem. 1992, 35, 2363; (b) Hutchison, A. J.; Webb, R. L.; Oei, H. H.; Ghai, G.
R.; Zimmerman, M. B.; Williams, M. J. Pharmacol. Exp. Ther. 1989, 251, 47.
10. Stein, H. H.; Prasad, R. N. Adenosine-50-Carboxylic Acid Amides. U.S. Patent
3,914,415, Oct. 21, 1975.
11. (a) Bevan, N.; Butchers, P. R.; Cousins, R.; Coates, J.; Edgar, E. V.; Morrison, V.;
Sheehan, M. J.; Reeves, J.; Wilson, D. J. Eur. J. Pharmacol. 2007, 564, 219; b Chan,
C.; Cousins, R. P. C.; Cox, B. 2-(Purin-9-yl)-tertrahydrofuran-3,4-diol
derivatives. WO 99/38877, Aug. 5, 1999.
(TNF-a) from isolated human and rat peripheral blood mononu-
clear cells (PBMC).23 Using this test system it was possible to assess
the extent of any cross-reactivity differences between human and
rat as a consequence of receptor sequence variation. Cross-reactiv-
ity data for the most interesting 40-azacarbocyclic nucleoside
examples and the reference compounds are shown in Table 2.
The three reference compounds exhibited modest 2–5-fold shifts
to lower IC50 values in the rat relative to the human PBMC assay.
In contrast, the reversed amide analogues 17 and 18 demonstrated
54- and 78-fold shifts in activity, respectively. Even more dramatic
was the 171-fold shift observed for the N-bonded heterocyclic
example 32. These data highlight that an understanding of inter-
species cross-reactivity, as a consequence of amino acid sequence
differences, will be an important parameter for the preclinical opti-
misation of both the N-bonded heterocycle and reversed amide 40-
aza carbocyclic nucleoside series.
12. Electron density calculations were carried out using Jaguar 7.5 from the
Schrödinger 2008 modelling suite software to build and minimise the 40-
substituents. For the minimisation: density functional theory was used with
**
the B3LYP functional and 6-311G basis sets. The default settings were used
with an accuracy level of ‘accurate’. For the final geometry the electrostatic
potential was calculated and displayed. For the images the range of the colour
ramp was set the same for all of the three substituents shown in Figure 2.
13. (a) Tuccinardi, T.; Ortore, G.; Manera, C.; Saccomanni, G.; Martinelli, A. Eur. J.
Med. Chem. 2006, 41, 321; (b) Kim, S.-K.; Gao, Z.-G.; Van Rompaey, P.; Gross, A.
S.; Chen, A.; Van Calenbergh, S.; Jacobsen, K. A. J. Med. Chem. 2003, 46, 4847.
14. (a) Ando, T.; Kojima, K.; Chahota, P.; Kozaki, A.; Milind, N. D.; Kitade, Y. Bioorg.
Med. Chem. Lett. 2008, 18, 2615; (b) Yang, M.; Schneller, S. W. Bioorg. Med.
Chem. Lett. 2005, 13, 877; (c) Ghosh, A.; Miller, M. J.; De Clercq, E.; Balzarini, J.
Nucleosides Nucleotides 1999, 18, 217; (d) Hegde, V. R.; Seley, H. K.; Schneller, S.
W. J. Org. Chem. 1998, 63, 7092; (e) Mulvihill, M. J.; Miller, M. J. Tetrahedron
1998, 54, 6605.
15. (a) Donohoe, T. J.; Blades, K.; Moore, P. R.; Waring, M. J.; Winter, J. J. G.;
Helliwell, M.; Newcombe, N. J.; Stemp, G. J. Org. Chem. 2002, 67, 7946; (b)
Ghosh, A.; Ritter, A. R.; Miller, M. J. J. Org Chem. 1995, 60, 5808.
16. Siddiqi, S. M.; Jacobson, K. A.; Esker, J. L.; Olah, M. E.; Ji, X.; Melman, N.; Tiwari,
K. N.; Secrist, J. A., III; Schneller, S. W.; Cristalli, G.; Stiles, G. L.; Johnson, C. R.;
Ijzerman, A. P. J. Med. Chem. 1995, 38, 1174.
In summary, reversed amide and N-bonded heterocycle 40-aza
carbocyclic nucleosides were identified as scaffolds of interest
through in silico electron density comparisons with the known
adenosine A2A receptor agonist NECA. An efficient synthetic route
to these two 40-aza carbocyclic nucleoside series is described
which utilises two successive palladium(0) allylic coupling reac-
tions as the key transformations. Following this approach, highly
potent and selective agonists of the human adenosine A2A receptor
have been identified in both the N-bonded heterocycle and re-
versed amide series by employing established purine substitution
patterns. Using these established purine substitution patterns the
propionamides 14–18 and the 4-hydroxymethylpyrazole 32 were
determined to be the most potent and selective examples from
the 40-reversed amide and 40-N-bonded heterocyclic series, respec-
tively. An assessment of the interspecies variability highlighted rel-
atively poor rat cross-reactivity for the most potent examples at
the human adenosine A2A receptor from both 40-aza carbocyclic
nucleoside series. The optimisation of these two 40-aza carbocyclic
nucleoside series as lung-targeted adenosine A2A receptor agonists
for use as inhaled anti-inflammatory agents will be the subject of
future publications.
17. Wuts, P. G. M.; Ashford, S. W.; Anderson, A. M.; Atkins, J. R. Org. Lett. 2003, 5,
1483.
18. Keeling, S. E.; Albinson, F. D.; Ayres, B. E.; Butchers, P. R.; Chambers, C. L.;
Cherry, P. C.; Ellis, F.; Ewan, G. B.; Gregson, M.; Knight, J.; Mills, K.; Ravenscroft,
P.; Reynolds, L. H.; Sanjar, S.; Sheehan, M. J. Bioorg. Med. Chem. Lett. 2000, 10,
403.
19. Jain, R.; Cohen, L. A. Tetrahedron 1996, 52, 5363.
20. Briefly, the neutrophil assay was carried out in the following manner:
neutrophils were isolated from human blood by centrifuge and resuspended in
Hank’s balanced salt solution containing 0.1% bovine serum albumin to give a
suspension of 4 ꢀ 106 cells/ml (neutrophil purity >97%) and 50
l
l dispensed per
l) and after a 30 min
l of a 400 M solution) and
l of a 4 M solution) were added.
assay well (SigmacoteÒ treated). Test article was added (50
l
preincubation at 37 °C solutions of lucigenin (50
l
l
then formylated tripeptide MLP (fMLP) (50
l
l
Release of reactive oxygen species was assessed from the chemiluminescence
generated over the 4 min incubation period following fMLP addition.
21. Volpini, R.; Costanzi, S.; Lambertucci, C.; Taffi, S.; Vittori, S.; Klotz, K.-N.;
Cristalli, G. J. Med. Chem. 2002, 45, 3271.
22. (a) Melman, A.; Gao, Z.-G.; Kumar, D.; Wan, T. C.; Gizewski, E.; Auchampach, J.
A.; Jacobsen, K. A. Bioorg. Med. Chem. Lett. 2008, 18, 2813; (b) Cappellacci, L.;
Franchetti, P.; Vita, P.; Petrelli, R.; Lavecchia, A.; Costa, B.; Spinetti, F.; Martini,
C.; Klotz, K.-N.; Grifantini, M. Bioorg. Med. Chem. 2008, 16, 336; (c) Gao, Z.-G.;
Blaustein, J. B.; Gross, A. S.; Melman, N.; Jacobson, K. A. Biochem. Pharmacol.
2003, 65, 1675; (d) Linden, J.; Jacobson, K. A. Dev. Cardiovasc. Med. 1998, 209, 1.
23. Briefly, the PBMC assays were carried out in the following manner:
mononuclear cells were isolated from blood, resuspended with 10% fetal calf
Acknowledgements
The authors would like to thank Dr. Brian Everatt, Clive Aldcroft,
Thomas Lochmann and Dr. John Tyler for analytical support.
serum to give a 1 ꢀ 106 cells/ml suspension and 100
ll dispensed per well. Test
article was added (50 ll) and after a 10 min preincubation LPS was added
References and notes
(50 ll of a 10 ng/ml solution). After incubating for a further 20 h at 37 °C TNF-a
levels were assessed by ELISA. The addition of the adenosine A2A selective
antagonist ZM-241,385 (10 nM) to the assays from both species produced the
anticipated displacement of the CGS21680 dose–response curves, consistent
with the response being adenosine A2A receptor mediated.
1. Fredholm, B. B.; Ijzerman, A. P.; Jacobson, K. A.; Klotz, K.-N.; Linden, J. Pharmacol.
Rev. 2001, 53, 527.
2. Jacobsen, K. A.; Gao, Z. G. Nat. Rev. Drug Disc. 2006, 5, 247.