V. Mirkhani et al. / Polyhedron 29 (2010) 1600–1606
1605
Table 3
The attractive nature of these interactions is mainly due to elec-
trostatic effects, but polarization, charge-transfer and dispersion
contributions all play an important role [24]. The Xꢀꢀ ꢀEl (X = Halogen,
El = Electronegative atom) interactions, or in general non-bonded
interactions, are capable of affecting the realized crystalline
architecture of solid compounds decisively and they may thus
be used as tools in molecular designs, crystal engineering and
supramolecular chemistry [25].
Selected bond distances (Å) and angles (°).
Complex 1
Re(1)–Cl(1)
Re(1)–N(1)
Re(1)–N(2)
Re(1)–C(17)
Re(1)–C(18)
Re(1)–C(19)
2.4886(4)
2.2237(16)
2.1859(14)
1.9163(18)
1.9321(15)
1.910(2)
N(1)–Re(1)–N(2)
N(1)–Re–C(18)
N(2)–Re–C(19)
C(17)–Re–C(18)
C(17)–Re–C(19)
C(17)–Re(1)–Cl(1)
78.52(5)
98.36(7)
98.58(6)
92.36(7)
87.30(8)
172.88(6)
Complex 2
Re(1)–Cl(1)
Re(1)–N(1)
Re(1)–N(2)
Re(1)–C(17)
Re(1)–C(18)
Re(1)–C(19)
2.4929(7)
2.188(2)
2.225(2)
1.913(3)
1.918(3)
1.937(3)
N(1)–Re(1)–N(2)
N(1)–Re–C(17)
N(2)–Re–C(19)
C(18)–Re–C(17)
C(18)–Re–C(19)
C(18)–Re(1)–Cl(1)
78.15(8)
4. Conclusion
98.62(10)
98.14(11)
86.86(12)
92.08(11)
173.53(9)
This work describes the synthesis and characterization of sev-
eral Re(I)–tricarbonyl complexes with diimine ligands. The ligands
were obtained by the condensation of benzaldehyde derivatives
with ethylendiamine. All the complexes have been fully character-
ized by FTIR, 1H, 13C NMR and UV–Vis spectroscopy, elemental
analysis and X-ray diffraction analysis. The presence of three
strong IR absorptions in the region of CO stretching vibrations is
consistent with a facial coordination of the three carbonyl ligands.
The molecular units of the complexes are stabilized by intermolec-
ular hydrogen bonds and short intermolecular halogen–oxygen
and oxygen–oxygen interactions.
Complex 3
Re(1)–Cl(1)
Re(1)–N(1)
Re(1)–N(2)
Re(1)–C(17)
Re(1)–C(18)
Re(1)–C(19)
2.4884(7)
2.186(3)
2.193(2)
1.921(3)
1.911(3)
1.909(3)
N(1)–Re(1)–N(2)
N(1)–Re–C(18)
N(2)–Re–C(17)
C(19)–Re–C(17)
C(19)–Re–C(18)
C(19)–Re(1)–Cl(1)
77.35(8)
98.82(10)
98.39(10)
90.02(12)
86.48(12)
176.23(9)
Complex 4
Re(1)–Cl(1)
Re(1)–N(1)
Re(1)–N(2)
Re(1)–C(19)
Re(1)–C(20)
Re(1)–C(21)
2.4835(10)
2.195(3)
2.199(3)
1.912(4)
1.913(4)
1.929(4)
N(1)–Re(1)–N(2)
N(1)–Re–C(19)
N(2)–Re–C(21)
C(20)–Re–C(19)
C(20)–Re–C(21)
C(20)–Re(1)–Cl(1)
77.73(11)
99.48(15)
97.17(15)
86.58(18)
90.87(18)
175.83(13)
5. Supplementary material
CCDC 694693–694696 contain the supplementary crystallo-
graphic data for complexes 1–4, respectively. These data can be ob-
tained
free
of
charge
via
tre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: (+44) 1223-336-
033; or e-mail: deposit@ccdc.cam.ac.uk.
Table 4
Parameters of hydrogen bonding interactions in complexes 1-4.
D–Hꢀ ꢀ ꢀA
Hꢀ ꢀ ꢀA (Å)
Dꢀ ꢀ ꢀA (Å)
D–Hꢀ ꢀ ꢀA (°)
Complex 1
Acknowledgements
C(10)–H(10A)ꢀ ꢀ ꢀCl(1)i
C(12)–H(12A)ꢀ ꢀ ꢀCl(1)
2.7300
2.7900
3.5910(16)
3.6529(18)
155.00
155.00
This work was supported by the University of Isfahan and the
Universiti Sains Malaysia (USM). The authors are grateful for their
support. Dr. R. Kia thanks USM for a post-doctoral research fellow-
ship. Dr. E. Shams is acknowledged for helpful discussions about
the CV measurements.
Complex 2
C(1)–H(1A)ꢀ ꢀ ꢀCl(1)
2.7800
2.7500
3.654(3)
3.616(3)
156.00
155.00
C(7)–H(7A)ꢀ ꢀ ꢀCl(1)i
Complex 4
C(5)–H(5A)ꢀ ꢀ ꢀCl(1)
C(7)–H(7A)ꢀ ꢀ ꢀO(5)ii
C(18)–H(18A)ꢀ ꢀ ꢀCl(1)iii
2.6200
2.6000
2.6500
3.505(4)
3.426(5)
3.526(4)
158.00
148.00
151.00
References
Symmetry codes: (i) 1 + x, y, z; (ii) 3/2 ꢁ x, ꢁ1/2 + y, ꢁ1/2 ꢁ z; (iii) 1/2 + x, ꢁ1/2 ꢁ y,
ꢁ1/2 + z.
[1] T. Doleck, J. Attard, F.R. Fronczek, A. Moskun, R. Isovitsch, Inorg. Chim. Acta 362
(2009) 3872.
[2] K. Potgieter, P. Mayer, T.I.A. Gerber, I.N. Booysen, Polyhedron 28 (2009) 2808.
[3] P.J. Blower, Transition. Met. Chem. 23 (1998) 109.
[4] N. Hoshino, Coord. Chem. Rev. 174 (1998) 77.
[5] S. Uhlenbrock, R. Wegner, B. Krebs, J. Chem. Soc., Dalton Trans. (1996) 3731.
[6] M. Grätzel (Ed.), Energy Resources through Photochemistry and Catalysis,
Academic Press, New York, 1983.
[7] Y. Chen, W. Liu, J.-S. Jin, B. Liu, Z.-G. Zou, J.-L. Zuo, X.-Z. You, Organomet. Chem.
694 (2009) 763.
Table 5
The values of Xꢀ ꢀ ꢀEl, and Elꢀ ꢀ ꢀEl (X = halogen, El = electronegative atom) short contacts
(Å) in complexes 1–4.
Complex 1
Complex 2
Complex 3
[8] (a) J. Hawecker, J.M. Lehn, R. Ziessel, J. Chem. Soc., Chem. Commun. (1983)
536;
Cl(2)ꢀ ꢀ ꢀO(3) 3.1126(16)
Br(1)ꢀ ꢀ ꢀCl(1) 3.6143(9)
Br(2)ꢀ ꢀ ꢀO(1) 3.117(3)
O(2)ꢀ ꢀ ꢀO(3) 3.026(3)
Br(1)ꢀ ꢀ ꢀO(2) 2.943(2)
Br(2)ꢀ ꢀ ꢀO(2) 3.255(2)
(b) B.P. Sullivan, T.J. Meyer, J. Chem. Soc., Chem. Commun. (1984) 1244;
(c) G. Calzaferri, K. Hadener, J. Li, J. Photochem. Photobiol., A 64 (1992) 259.
[9] C. Kutal, A.J. Corbin, G. Ferraudi, Organometallics 6 (1987) 553.
[10] A. Vogler, H. Kunkely, Coord. Chem. Rev. 200–202 (2000) 991.
[11] S.S. Jurisson, J.D. Lydon, Chem. Rev. 99 (1999) 2205.
[12] SMART, Bruker Molecular Analysis Research Tool, Bruker AXS Inc., Madison,
Wisconsin, USA, 2005.
Symmetry codes: (i) ꢁx, ꢁy, ꢁz (ii) ꢁ1ꢁx, ꢁy, ꢁz (iii) x, 1/2 ꢁ y, ꢁ1/2 + z (iv) x, 1+ y, z.
[13] SAINT (Version V7.12A), Data Reduction and Correction Program, Bruker AXS
Inc., Madison, Wisconsin, USA, 2005.
[14] SADABS (Version 2004/1), An Empirical Absorption Correction Program. Bruker
AXS Inc., Madison, Wisconsin, USA.
[15] G.M. Sheldrick, Acta Crystallogr., Sect. A 64 (2008) 112.
[16] H. tom Dieck, I.W. Renk, Chem. Ber. 104 (1971) 92.
[17] M.K. Itokazu, A.S. Polo, N.Y. Murakami Iha, J. Photochem. Photobiol., A 160
(2003) 27.
p p interactions with centroid to centroid distances of
ꢀ ꢀ ꢀ
3.6065(16) and 3.7993(18) Å, [Cg1ꢀ ꢀ ꢀCg1i and Cg2ꢀ ꢀ ꢀCg2ii, (i) 1 ꢁ x,
ꢁy, ꢁ1 ꢁ z and (ii) ꢁ1 ꢁ x, 1 ꢁ y, ꢁz; Cg1 and Cg2 are the centroids
of the C1–C6 and C11–C16 benzene rings, respectively]. In complex
3, the short intermolecular Brꢀ ꢀ ꢀO interactions link neighboring
molecules into 1D extended chains along both the [0 1 0] and
[0 0 1] directions, forming a 2D network which is parallel to the
bc-plane (Fig. 5). Details of the oxygen–oxygen and halogen–oxy-
gen interactions (Xꢀ ꢀ ꢀO) are presented in Table 5.
ˇ
[18] M. Busby, P. Matousek, M. Towrie, A. Vlcek Jr., Inorg. Chim. Acta 360 (2007)
885.
[19] I. Veroni, C.A. Mitsopoulou, F.J. Lahoz, J. Organomet. Chem. 693 (2008) 2451.
[20] D.L. Reger, R.P. Watson, M.D. Smith, J. Organomet. Chem. 692 (2007) 3094.