to reactions in the gas phase.12-15 To the best of our
knowledge, there are no reports on direct probing of online
kinetic studies in solution. We report here the first online
kinetic study of a racemization reaction of an imidazoline
using online VCD measurements in solution.
Scheme 1. Racemization Process
Imidazolines are valuable chiral building blocks that
have been used to construct libraries of chiral ligands
including imidazoline-amines,16 imidazoline-aminoph-
enols,17,18 imidazoline-pyrrolidines,19 and imidazoline-phos-
phines.20-24 Chiral imidazolines bearing the core of
compound 1 are effective in a number of organic transforma-
tions,25 including enantioselective hydrogenations,20,26 asym-
metric Henry reactions,27 asymmetric Heck reactions,28,29
and asymmetric Friedel-Crafts substitutions.30 Imidazoline-
containing drugs have been also used for the treatment of
cancer, central nervous system (CNS) diseases, and hyper-
tension.31-33
1 using online VCD measurements with the support of
chemometrics and density functional theory (DFT) computa-
tions. This approach has provided a direct, stereochemical
probe of the reaction and enabled the determination of both
the reaction kinetics and the reaction mechanism.
It was found that under strongly basic conditions (Scheme
1) imidazoline 1 in solution undergoes an unexpected
racemization.34 To understand this phenomenon, we present
herein the first study of the racemization of chiral imidazoline
(11) Nieto, S.; Dragna, J. M.; Anslyn, E. V. Chem.sEur. J. 2010, 16,
227–232.
(12) Chickos, J. S.; Annamalai, A.; Keiderling, T. A. J. Am. Chem. Soc.
1986, 108, 4398–402.
(13) Freedman, T. B.; Hausch, D. L.; Cianciosi, S. J.; Baldwin, J. E.
Can. J. Chem. 1998, 76, 806–810.
(14) Cianciosi, S. J.; Ragunathan, N.; Freedman, T. B.; Nafie, L. A.;
Baldwin, J. E. J. Am. Chem. Soc. 1990, 112, 8204–8206.
(15) Cianciosi, S. J.; Ragunathan, N.; Freedman, T. B.; Nafie, L. A.;
Lewis, D. K.; Glenar, D. A.; Baldwin, J. E. J. Am. Chem. Soc. 1991, 113,
1864–1866.
(16) Arai, T.; Mizukami, T.; Yokoyama, N.; Nakazato, D.; Yanagisawa,
A. Synlett 2005, 2670–2672.
(17) Concellon, J. M.; Riego, E.; Suarez, J. R.; Garcia-Granda, S.; Diaz,
M. R. Org. Lett. 2004, 6, 4499–4501.
(18) Arai, T.; Yokoyama, N.; Yanagisawa, A. Chem.sEur. J. 2008, 14,
2052–2059.
(19) Bhor, S.; Anilkumar, G.; Tse, M. K.; Klawonn, M.; Doebler, C.;
Bitterlich, B.; Grotevendt, A.; Beller, M. Org. Lett. 2005, 7, 3393–3396.
(20) (a) Busacca, C. A. Electronically Tuned Ligands, U.S. Pat.
6,316,620, 2001. (b) Menges, F.; Neubruger, M.; Pfaltz, A. Org. Lett. 2002,
4, 4713–4716.
(21) Guiu, E.; Claver, C.; Benet-Buchholz, J.; Castillon, S. Tetrahedron:
Asymmetry 2004, 15, 3365–3373.
(22) Tepfenhart, D.; Moisan, L.; Dalko, P. I.; Cossy, J. Tetrahedron
Lett. 2004, 45, 1781–1783.
(23) Busacca, C. A. ; Lorenz, J. C. Electronically Tuned Ligands for
Asymmetric Hydrogenation. 2007, 9/403 PV.
(24) Mueller, C.; Pidko, E. A.; Staring, A. J. P. M.; Lutz, M.; Spek,
A. L.; van Santen, R. A.; Vogt, D. Chem.sEur. J. 2008, 14, 4899–4905.
(25) Liu, H.; Du, D.-M. AdV. Synth. Catal. 2009, 351, 489–519.
(26) Busacca, C. A.; Lorenz, J. C.; Grinberg, N.; Haddad, N.; Lee, H.;
Li, Z.; Liang, M.; Reeves, D.; Saha, A.; Varsolona, R.; Senanayake, C. H.
Org. Lett. 2008, 10, 341
.
Figure 1. (a) VCD spectra of (S,S)-imidazoline 1 at different
(27) Bures, F.; Kulhanek, J.; Ruzicka, A. Tetrahedron Lett. 2009, 50,
3042–3045.
reaction times during racemization in DMSO solution at 60 °C.
(b) Relationship of ln (ee %) versus time at different temperatures.
(28) Busacca, C. A.; Grossbach, D.; So, R. C.; O’Brien, E. M.; Spinelli,
E. M. Org. Lett. 2003, 5, 595–598
.
(29) Busacca, C. A.; Grossbach, D.; Campbell, S. J.; Dong, Y.; Eriksson,
M. C.; Harris, R. E.; Jones, P.-J.; Kim, J.-Y.; Lorenz, J. C.; McKellop,
K. B.; O’Brien, E. M.; Qiu, F.; Simpson, R. D.; Smith, L.; So, R. C.; Spinelli,
Figure 1a presents the VCD spectra measured at different
time intervals during the racemization of (S,S)-imidazoline
1 at 60 °C. The reaction mixtures were continuously pumped
through a spectrophotometric flow cell, and the spectra were
automatically recorded with a FT-VCD instrument during
the entire course of the reaction. Due to the absorbance
interference from the solvent and reagents, we focused on
the region from 1650 to 1480 cm-1, where four distinct VCD
bands at 1615, 1600, 1570, and 1508 cm-1 can be observed.
E. M.; Vitous, J.; Zavattaro, C. J. Org. Chem. 2004, 69, 5187–5195
.
(30) Yokoyama, N.; Arai, T. Chem. Commun. 2009, 3285–3287.
(31) Sharma, V.; Peddibhotla, S.; Tepe, J. J. J. Am. Chem. Soc. 2006,
128, 9137–9143
(32) Baraldi, P. G.; Tabrizi, M. A.; Gessi, S.; Borea, P. A. Chem. ReV.
2008, 108, 238–263
.
.
(33) Patel, S.; Player, M. R. Expert Opin. InVest. Drugs 2008, 17, 1865–
1882
.
(34) Busacca, C. A.; Bartholomeyzik, T.; Cheekoori, S.; Grinberg, N.;
Lee, H.; Ma, S.; Saha, A.; Shen, S.; Senanayake, C. H. J. Org. Chem. 2008,
73, 9756–9761.
Org. Lett., Vol. 12, No. 12, 2010
2783