pubs.acs.org/joc
FeCl3-Catalyzed Oxidative Allylation of sp2 and sp3
C-H Bond Adjacent to a Nitrogen Atom: Easy
Access to Homoallyl Tertiary Amines
SCHEME 1. FeCl3-Catalyzed Allylation of Electronically
Activated Tetrahydroisoquinoline
Gullapalli Kumaraswamy,*,† Akula Narayana Murthy,†,‡
and Arigala Pitchaiah†
†Organic Division-III, Indian Institute of Chemical
Technology, Hyderabad 500 007, India, and
‡An Associate Institution of University of Hyderabad,
Hyderabad 500 046, India
have also been explored for this transformation.4 Among
them, copper salts turned out to be the most efficient
catalysts5 for the R-functionlization to nitrogen. With our
continued interest in developing transition-metal-catalyzed
novel methodologies,6 we focused on oxidative coupling of
tertiary amines7 with allyl tributyltin using a catalytic
amount of FeCl3 in the presence of air or T-HYDRO
(70% tBuOOH in H2O) as terminal oxidant.
Received March 27, 2010
After considerable experimentation, N-phenyltetrahydro-
isoquinoline 1a (3 equiv) reacted with allyl tributyltin 2
(1 equiv) in acetonitrile at room temperature using 10 mol % of
FeCl3 6H2O. It was observed that the desired reaction
3
proceeded within 30 min under the atmosphere of air to give
3a in 85% yield (Scheme 1).
Oxidative allylation to sp2- and sp3-carbon attached to
the nitrogen atom was accomplished. The R-allylation of
tertiary amines was catalyzed by easily available hydrated
iron(III) chloride in combination with air or aqueous
tBuOOH. Remarkably, N-allyl- and N-propagyl-tethered
tertiary amines were also allylated through this protocol.
Further, under the same conditions, improvement of yield
was observed when the N-phenyl moiety was replaced with
electron-rich 4-methoxyphenyl 1b (3b, 90% yield) or
2-naphthyl moiety 1c (3c, 90%) (Scheme 1), while N-benzyl-
tetrahydroisoquinoline 1d failed to yield the required pro-
duct 3d under similar conditions. On the other hand, using
t
T-HYDRO (70% BuOOH in H2O) (2 equiv) as terminal
oxidant under otherwise identical conditions resulted in 3d in
85% yield (Table 1, entry 11). The reaction performed under
air balloon and oxygen balloon did not proceed. A longer
reaction time decreased the product yield.
In recent years, there has been a resurgence of interest in
the oxidative functionalization of sp3 C-H bonds adjacent
to a nitrogen atom.1 A plethora of methods have been
developed to achieve this functionalization with various
nucleophiles.2 The prominent route appears to be transi-
tion-metal catalysis together with either organic peroxides or
elemental oxygen to generate iminium cation, which in turn
reacts with various nucleophiles. Following the pioneering
work of Murahashi et al. on the Ru-catalyzed R-cyanation of
tertiary amines,3 many other alternative transition metals
(4) (a) Yamaguchi, R.; Ikeda, C.; Takahashi, Y.; Fujita, K. I. J. Am.
Chem. Soc. 2009, 131, 8410. (b) Nishinaga, A.; Yamazaki, S.; Matsuura, T.
Tetrahedron Lett. 1988, 29, 4115. (c) Wang, J. R.; Fu, Y.; Zhang, B. B.; Cui,
X.; Liu, L.; Guo, Q. X. Tetrahedron Lett. 2006, 47, 8293. (d) Grirrane, A.;
Corma, A.; Garcia, H. J. Catal. 2009, 264, 138. (e) Zhu, B.; Angelici, R. J.
Chem. Commun. 2007, 2157.
(5) (a) Li, Z.; Li, C. J. J. Am. Chem. Soc. 2004, 126, 11810. Li, Z.; Li, C. J.
Org. Lett. 2004, 6, 4997. (b) Shen, Y.; Tan, Z.; Chen, D.; Feng, X.; Li, M.;
C.-C. Guo, C. C.; Zhu, C. Tetrahedron. 2009, 65, 158. (c) Sureshkumar, D.;
Sud, A.; Klussmann, M. Synlett 2009, 1558. (d) Basle, O.; Li, C. J. Chem.
Commun. 2009, 4124. (e) Ying, B.-P.; Trogden, G. B.; Kohlman, D. T.;
Liang, S. X.; Xu, Y.-C. Org. Lett. 2004, 6, 1523. (f) Huang, L.; Zhang, X.;
Zhang, Y. Org. Lett. 2009, 11, 3730. (g) Chu, L.; Zhang, X.; Qing, F.-L. Org.
Lett. 2009, 11, 2197.
(6) (a) Kumaraswamy, G.; Sadaiah, K.; Ramakrishna, D. S.; Naresh, P.;
Sridhar, B.; Jagadeesh, B. Chem. Commun. 2008, 5324. (b) Kumaraswamy, G.;
Ankamma, K.; Pitchaiah, A. J. Org. Chem. 2007, 72, 9822. (c) Kumaraswamy,
G.; Rambabu, D.; Jayaprakash, N.; Venkata Rao, G.; Sridhar, B. Eur. J. Org.
Chem. 2009, 4158. (d) Kumaraswamy, G.; Venkata Rao, G.; Ramakrishna, G.
Synlett 2006, 1122. (e) Kumaraswamy, G.; Venkata Rao, G.; Narayana Murthy,
A.; Sridhar, B. Synlett 2009, 1180.
(7) (a) Liu, P.; Zhou, C.-Y.; Xiang, S.; Che, C.-M. Chem. Commun. 2010,
DOI: 10.1039/c001209b. (b) Han, W.; Ofial, A. R. Chem. Commun. 2009, 5024.
(c) Han, W.; Ofial, A. R. Chem. Commun. 2009, 6023. (d) Volla, C. M. R.; Vogel,
P. Org. Lett. 2009, 11, 1701. (e) Ohta, M.; Quick, M. P.; Yamaguchi, J.; Wunsch,
B.; Itami, K. Chem.;Asian J. 2009, 4, 1416. (f) Murata, S.; Teramoto, K.; Miura,
M.; Nomura, M. Bull. Chem. Soc. Jpn. 1993, 66, 1297. (g) Murata, S.; Miura, M.;
Nomura, M. Chem. Commun. 1989, 116.
(1) (a) Murahashi, S.-I.; Imada, Y. In Transition Metals for Organic Synth-
esis, 2nd ed.; Beller, M., Bolm, C., Eds.; Wiley-VCH: Weinheim, 2004; Vol. 2, p
497. (b) Li, C. J. Acc. Chem. Res. 2009, 42, 335. (c) Davies, H. M. L.;
Venkataramani, C. Angew. Chem., Int. Ed. 2002, 41, 2197. (d) Davies,
H. M. L.; Hansen, T.; Churchill, M. R. J. Am. Chem. Soc. 2000, 122, 3063.
(e) Doyle, S. Angew.Chem. Int. Ed. 2001, 40, 3551.
(2) (a) Nicolaou, K. C.; Mathison, C. J. N.; Montagnon, T. Angew.
Chem., Int. Ed. 2003, 42, 4077. (b) Shu, X. Z.; Xia, X. F.; Yang, Y. F.; Ji,
K. G.; Liu, X. Y.; Liang, Y. M. J. Org. Chem. 2009, 74, 7464. (c) Muller, P.;
Gilabert, D. M. Tetrahedron 1988, 44, 7171. (d) Ell, A. H.; Samec, M. S. J.;
Brasse, C.; Backvall, J. E. Chem. Commun. 2002, 1144. (e) Jiang, G.; Chen, J.;
Huang, J. S.; Che, C. M. Org. Lett. 2009, 11, 4568. (f) Pandey, G.;
Kumaraswamy, G. Tetrahedron Lett. 1988, 29, 4153. (g) Pandey, G.;
Kumaraswamy, G.; Bhalerao, U. T. Tetrahedron Lett. 1989, 30, 6059.
(3) (a) Murahashi, S.-I.; Komiya, N.; Terai, H.; Nakae, T. J. Am. Chem.
Soc. 2003, 125, 15312. (b) Murahashi, S.-I.; Komiya, N.; Terai, H. Angew.
Chem., Int. Ed. 2005, 44, 6931.
3916 J. Org. Chem. 2010, 75, 3916–3919
Published on Web 05/06/2010
DOI: 10.1021/jo1005813
r
2010 American Chemical Society