Iridium(I)-Catalyzed Cycloisomerization of Cyclohexadienyl Alkynes
cloisomerization reaction of various enynes with a di- Acknowledgements
A
triple
bond
provided
bicyclo-
This work was supported by the Korea Government
(MOEHRD) (KRF-2008-341-C00022) and the SRC/ERC
program of MOST/KOSEF (R11-2005-065). SHS thanks the
BK21 fellowship and Seoul Science Fellowship.
ACHTUNGTRENNUNG[4.1.0]heptanes. The reaction times and yields were
highly dependent upon the substrate. As already men-
tioned, Shibata et al.[6b] also reported the formation of
bicyclo
ic iridium species [20 mol% IrCl(CO)AHCUTNGTRENNUNG
24 mol% AgX (X=OTf or SbF6)] as a catalyst. Com-
pared to their system, our catalytic system used
2.5 mol% [IrACHTUNGTRENNUNG(cod)Cl]2 in the absence of any additive.
References
[1] a) C. G. Lloyd-Jones, Org. Biomol. Chem. 2003, 1, 215–
236; b) I. J. S. Fairlamb, Angew. Chem. 2004, 116, 1066–
1070; Angew. Chem. Int. Ed. 2004, 43, 1048–1052; c) C.
Aubert, O. Buisine, M. Malacria, Chem. Rev. 2002, 102,
813–834.
[2] For recent reviews, see: a) L. Zhang, J. Sun, S. A.
Kozmin, Adv. Synth. Catal. 2006, 348, 2271–2296; b) C.
Nieto-Oberhuber, M. P. MuÇoz, S. Lꢂpez, E. Jimꢃnez-
NfflÇer, C. Nevado, E. Herrero-Gꢂmez, M. Raducan,
A. M. Echavarren, Chem. Eur. J. 2006, 12, 1677–1693;
c) E. Soriano, P. Ballesteros, J. Marco-Contelles, Orga-
nometallics 2005, 24, 3172–3181; d) B. M. Trost, F. D.
Toste, A. B. Pinkerton, Chem. Rev. 2001, 101, 2067–
2096; e) B. M. Trost, Chem. Eur. J. 1998, 4, 2405–2412;
f) I. Ojima, M. Tzamarioudaki, Z. Y. Li, R. J. Donovan,
Chem. Rev. 1996, 96, 635–662.
[3] Pt, Au, Ru, Cu, and Rh: a) J. Sun, M. P. Conley, L.
Zhang, S. A. Kozmin, J. Am. Chem. Soc. 2006, 128,
9705–9710; b) J. Barluenga, A. Dieguez, A. Fernandez,
F. Rodiriguez, F. J. Fananas, Angew. Chem. 2006, 118,
2145–2147; Angew. Chem. Int. Ed. 2006, 45, 2091–
2093; c) C. Fehr, J. Galindo, Angew. Chem. 2006, 118,
2967–2970; Angew. Chem. Int. Ed. 2006, 45, 2901–
2904; d) N. Chatani, K. Kataoka, S. Murai, N. Furuka-
wa, Y. Seki, J. Am. Chem. Soc. 1998, 120, 9104–9105;
Ti: e) S. J. Sturla, M. N. Kablauoi, S. L. Buchwald, J.
Am. Chem. Soc. 1999, 121, 1976–1977; Pt: f) M.
Mꢃndez, M. P. MuÇoz, C. Nevado, D. J. Cµrdenas,
A. M. Echavarren, J. Am. Chem. Soc. 2001, 123,
10511–10520; Pd: g) V. Cadierno, J. Diez, J. Garcia-Al-
varez, J. Gimeno, N. Nebra, J. Rubio-Garcia, Dalton
Trans. 2006, 5593–5604; h) K. L. Bray, G. C. Llyod-
Jones, M. P. MuÇoz, P. A. Saltford, E. H. P. Tan, A. R.
Tyler-Mahon, P. A. Worthington, Chem. Eur. J. 2006,
12, 8650–8663; Cu: i) A. V. Kel’in, A. W. Sromek, V.
Gevorgyan, J. Am. Chem. Soc. 2001, 123, 2074–2075;
Ru: j) B. M. Trost, M. U. Frederiksen, M. T. Rudd,
Angew. Chem. 2005, 117, 6788–6825; Angew. Chem.
Int. Ed. 2005, 44, 6630–6666; Rh: k) A. Lei, J. P. Wald-
kirch, M. He, X. Zhang, Angew. Chem. 2002, 114,
4708–4711; Angew. Chem. Int. Ed. 2002, 41, 4526–
4529; Co: l) S. Han, D. R. Anderson, A. D. Bond, H. V.
Chu, R. L. Disch, D. Holmes, J. M. Schulman, S. J. Teat,
K. P. C. Vollhardt, G. D. Whitener, Angew. Chem. 2002,
114, 3361–3364; Angew. Chem. Int. Ed. 2002, 41, 3227–
3230; Ir: m) E. Genin, S. Antoniotti, V. Michelet, J. P.
Genet, Angew. Chem. 2005, 117, 5029–5033; Angew.
Chem. Int. Ed. 2005, 44, 4949–4953; W: n) J. Barluen-
ga, A. Dieguez, F. Rodiriguez, F. J. Fananas, Angew.
Chem. 2005, 117, 128–130; Angew. Chem. Int. Ed.
2005, 44, 126–128; Au: o) A. S. K. Hashmi, T. M. Frost,
J. W. Bats, J. Am. Chem. Soc. 2000, 122, 911553–
Moreover, our catalytic system is also effective for an
allyl propargyl ether (18a) although the reaction time
is lengthened to 30 h. Thus, for the scope of available
enyne substrates our catalytic system seemed to have
a wide applicability.
Based on our experimental observations and the
previous study,[7c] a plausible reaction mechanism for
the formation of b, c, d and e is presented in the Sup-
porting Information.
In conclusion, we have demonstrated that our cata-
lytic system is effective for both cyclopropanation and
double cyclopropanation. The reaction pathways are
highly sensitive to the substrate, particularly to the
tether atom and (a) substituent(s) at the alkyne
moiety. For enynes with a terminal alkyne and a
carbon- or nitrogen-tether, double-cyclopropanated
compounds were obtained in reasonable to high
yields. For enynes substituted at the alkyne, cyclopro-
panated compounds were obtained in high yields.
However, a disubstituion at the propargyl carbon of
an enyne with a disubstituted alkyne and an N-Ts
tether can alter the reaction pathway to give an in-
complete double cyclopropanation product. When a
keto carbonyl was introduced to enynes having a
phenyl at the alkyne, Alder-ene-type products were
obtained in reasonable to high yields for hetero-atom-
tethered substrates. Our catalytic system is also effec-
tive for the cycloisomerization of various enynes with
an internal alkyne to give bicycloACHTUNTRGNEUNG[4.1.0]heptenes. Fur-
ther synthetic applications of these reactions are
under investigation.
Experimental Section
General Procedure for Iridium(I)-Catalyzed
Cycloisomerization of Cyclohexadienyl Alkynes
To a flame-dried 10-mL Schlenk flask capped with a rubber
septum, toluene (5 mL) and [IrACHTNUGRTENUNG(cod)Cl]2 (5.3 mg, 2.5 mol%)
were added under a flow of N2. To the resulting mixture, 1a
(0.11 g, 0.34 mmol) was added under N2. The reaction mix-
ture was stirred at 1308C and was monitored by TLC. After
the reaction mixture had been cooled to room temperature,
the reaction mixture was filtered and all the solvent was
evaporated under reduced pressure. A flash column chroma-
tography on a silica gel eluting with hexane and ethyl ace-
tate (v/v, 10:2) gave the 2b; yield: 94%.
Adv. Synth. Catal. 2010, 352, 317 – 322
ꢁ 2010 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
321