ARTICLES
11. Bong, D. T., Clark, T. D., Granja, J. R. & Ghadiri, M. R. Self-assembling organic
HPLC analyses of the synthetic and natural polytheonamide
indicated that the polytheonamide with R-sulfoxide is polytheona-
mide B (1). The retention time of synthetic 1 (tR ¼ 29.15 min)
matched that of natural polytheonamide B (1: tR ¼ 29.03 min), but
not that of its sulfoxide epimer polytheonamide A (epi-1: tR ¼
24.75 min) (Inertsil C8, 4.6 ꢀ 150 mm, UV 210 nm, n-PrOH/H2O
35:65, 0.5 ml min21, 45 8C). Detailed NMR data for synthetic 1
were collected (800 MHz), and the assigned signals clarified that syn-
thetic 1 is identical to natural 1 in all respects (1H NMR, DQF-COSY,
nanotubes. Angew. Chem. Int. Ed. 40, 988–1011 (2001).
´
12. Matile, S., Som, A. & Sorde, N. Recent synthetic ion channels and pores.
Tetrahedron 60, 6405–6435 (2004).
13. Koert, U., Al-Momani, L. & Pfeifer, J. R. Synthetic ion channels. Synthesis
1129–1146 (2004).
14. Humphrey, J. M. & Chamberlin, A. R. Chemical synthesis of natural product
peptides: coupling methods for the incorporation of noncoded amino acids into
peptides. Chem. Rev. 97, 2243–2266 (1997).
15. Chan, W. C. & White, P. D. Fmoc Solid Phase Peptide Synthesis—A Practical
Approach (Oxford Univ. Press, 2000).
TOCSY and NOESY: see Supplementary Information for details). 16. Carpino, L. A. & Han, G. Y. The 9-fluorenylmethoxycarbonyl function, a new
base-sensitive amino-protecting group. J. Am. Chem. Soc. 92, 5748–5749 (1970).
17. Merrifield, R. B. Solid phase peptide synthesis. I. The synthesis of a tetrapeptide.
J. Am. Chem. Soc. 85, 2149–2154 (1963).
18. Kent, S. B. H. Chemical synthesis of peptides and proteins. Ann. Rev. Biochem.
Overall, these data unambiguously show that polytheonamides A
and B have the S-sulfoxide and R-sulfoxide, respectively.
A preliminary toxicity study of the natural product and the synthetic
compound was carried out using mouse leukaemia P388 cells. Synthetic
1 displayed an EC50 value (98 pM) comparable to that of the natural
form (79 pM). However, the protected analogue 44 surprisingly did
not exhibit detectable toxicity (.1 mM), in spite of it having the
same molecular length as parent 1. Presumably, the bulky and hydro-
phobic protective groups impede the efficient formation of the mem-
brane-spanning ion channel by masking important polar residues,
although the structural basis of this hypothesis awaits clarification.
In summary, the first total synthesis and structural elucidation of
polytheonamide B, the largest known non-ribosomal peptide, was
achieved through the convergent assembly of four complex peptides.
Our versatile and modular strategy should be useful for synthesizing
various analogues to obtain structural insights into the conformation-
al behaviour of this peptide, as well as its channel function and potent
toxicity. Future investigations will include more detailed studies
towards the elucidation of the molecular mode of action of polytheo-
namide and the rational design of new tailor-made channel peptides.
57, 957–989 (1988).
19. Blake, J. & Li, C. H. New segment-coupling method for peptide synthesis in
aqueous solution: application to synthesis of human [Gly17]-b-endorphin.
Proc. Natl Acad. Sci. USA 78, 4055–4058 (1981).
20. Aimoto, S. Polypeptide synthesis by the thioester method. Biopolymers 51,
247–265 (1999).
21. Gmeiner, P., Feldman, P. L., Chu-Moyer, M. Y. & Rapoport, H. Efficient and
practical total synthesis of (þ)-vincamine from L-aspartic acid. J. Org. Chem. 55,
3068–3074 (1990).
22. Kawahara, N., Weisberg, M. & Goodman, M. Synthesis of b,b-dimethylated
amino-acid building blocks utilizing the 9-phenylfluorenyl protecting group.
J. Org. Chem. 64, 4362–4369 (1999).
23. Saito, B. & Katsuki, T. Ti(salen)-catalyzed enantioselective sulfoxidation using
hydrogen peroxide as a terminal oxidant. Tetrahedron Lett. 42, 3873–3876 (2001).
24. Yabuuchi, T. & Kusumi, T. NMR spectroscopic determination of the absolute
configuration of chiral sulfoxides via N-(methoxylphenylacetyl)sulfoximines.
J. Am. Chem. Soc. 121, 10646–10647 (1999).
25. Johnson, C. R., Kirchhoff, R. A. & Corkins, H. G. Synthesis of optically active
sulfoximines from optically active sulfoxides. J. Org. Chem. 39, 2458–2459 (1974).
26. Wang, S. p-Alkoxybenzyl alcohol resin and p-alkoxybenzyloxycarbonylhydrazide
resin for solid phase synthesis of protected peptide fragments. J. Am. Chem. Soc.
95, 1328–1333 (1973).
27. Futaki, S., Sogawa, K., Maruyama, J., Asahara, T., Niwa, M. & Hojo, H.
Preparation of peptide thioesters using Fmoc-solid-phase peptide synthesis and
its application to the construction of a template-assembled synthetic protein
(TASP). Tetrahedron Lett. 38, 6237–6240 (1997).
28. Barlos, K., Chatzi, O., Gatos, D. & Stavropoulos, G. 2-chlorotrityl chloride resin.
Int. J. Peptide Protein Res. 37, 513–520 (1991).
Received 9 September 2009; accepted 13 January 2010;
published online 21 February 2010; corrected online 23 February 2010
References
1. Hamada, T., Matsunaga, S., Yano, G. & Fusetani, N. Polytheonamide A and B,
highly cytotoxic, linear polypeptides with unprecedented structural features, from
the marine sponge, Theonella swinhoei. J. Am. Chem. Soc. 127, 110–118 (2005).
2. Schwarzer, D., Finking, R. & Marahiel, M. A. Nonribosomal peptides: from
genes to products. Nat. Prod. Rep. 20, 275–287 (2003).
29. Carpino, L. A. 1-hydroxy-7-azabenzotriazole. An efficient peptide coupling
additive. J. Am. Chem. Soc. 115, 4397–4398 (1993).
30. Bollhagen, R., Schmiedberger, M., Barlos, K. & Grell, E. A new reagent for the
cleavage of fully protected peptides synthesized on 2-chlorotrityl chloride resin.
Chem. Commun. 2559–2560 (1994).
3. Hamada, T., Matsunaga, S., Fusetani, N., Fujiwara, M. & Fujita, K. Structure
elucidation of polytheonamide B, a highly cytotoxic polypeptide from the
marine sponge Theonella swinhoei, by NMR spectroscopy. Tennen Yuki
Kagobutsu Toronkai Koen Yoshishu 37, 695–700 (1995).
Acknowledgements
This work was supported financially by the Takeda Science Foundation and the Naito
Foundation. Fellowships for N.S. and S.T. from the Japan Society for the Promotion of
Science are gratefully acknowledged. We thank S. Matsunaga for providing the natural
polytheonamides A and B, T. Hamada for valuable information, T. Katsuki for providing
the catalyst and M. Hirama for valuable suggestions. The 800 MHz 1H NMR spectra were
recorded at RIKEN SSBC, Yokohama, Japan.
4. Urry, D. W. The gramicidin A transmembrane channel: a proposed p(L,D) helix.
Proc. Natl Acad. Sci. USA 68, 672–676 (1971).
5. Ketchem, R. R., Hu, W. & Cross, T. A. High-resolution conformation of
gramicidin A in a lipid bilayer by solid-state NMR. Science 261, 1457–1460 (1993).
6. Stankovic, C. J., Heinemann, S. H., Delfino, J. M., Sigworth, F. J. &
Schreiber, S. L. Transmembrane channels based on tartaric acid–gramicidin A
hybrids. Science 244, 812–817 (1989).
Author contributions
7. Navarro, E., Fenude, E. & Celda, B. Solution structure of a D,L-alternating
oligonorleucine as a model of double-stranded antiparallel b-helix. Biopolymers
64, 198–209 (2002).
8. Oiki, S., Muramatsu, I., Matsunaga, S. & Fusetani, N. A channel-forming peptide
toxin: polytheonamide from marine sponge (Theonella swinhoei). Folia
Pharmacol. Jpn 110 (Suppl. 1), 195P–198P (1997).
M. Inoue conceived and designed the study. N.S. and S.T. performed the total synthesis.
N.S. and S.M. contributed the structural analyses. T.T., K.O., H.I., Y.M. and M.Iida
performed the fragment syntheses. M.Iida and N.L. performed the bioassay. M.Inoue, N.S.
and S.M. co-wrote the paper.
9. Kimmerlin, T. & Seebach, D. ‘100 years of peptide synthesis’: ligation methods Additional information
for peptide and protein synthesis with applications to beta-peptide assemblies.
J. Peptide Res. 65, 229–260 (2005).
10. Koeppe, R. E. II & Andersen, O. S. Engineering the gramicidin channel. Annu.
Rev. Biophys. Biomol. Struct. 25, 231–258 (1996).
285
© 2010 Macmillan Publishers Limited. All rights reserved.