ACCEPTED MANUSCRIPT
Commun 2012;48:2525-7.
[25] Mak CS, Pentlehner D, Stich M, Wolfbeis OS, Chan WK, Yersin H. Exceptional oxygen sensing
capabilities and triplet state properties of Ir(ppy-NPh2)3. Chem Mater 2009;21:2173-5.
[26] Liu C, Song X, Rao X, Xing Y, Wang Z, Zhao J, et al. Novel triphenylamine-based
cyclometalated platinum(II) complexes for efficient luminescent oxygen sensing. Dyes Pigm
2014;101:85–92.
[27] Liu C, Rao X, Song X, Qiu J, Jin Z. Palladium-catalyzed ligand-free and aqueous suzuki reaction
for the construction of (hetero) aryl-substituted triphenylamine derivatives. RSC Adv
2013;3:526-31.
[28] Liu C, Yu H, Xing Y, Gao Z, Jin Z. Photostable ester-substituted bis-cyclometalated cationic
iridium(III) complexes for continuous monitoring of oxygen. Dalton Trans 2016;45:734-41.
[29] Xing Y, Liu C, Xiu J-H, Li J-Y. Photostable fluorophenyl-substituted cyclometalated platinum(II)
emitters for monitoring of molecular oxygen in real time. Inorg Chem 2015;54:7783-90.
[30] Zhou Y, Gao H, Wang X, Qi H. Electrogenerated chemiluminescence from heteroleptic
iridium(III) complexes with multicolor emission. Inorg Chem 2015;54:1446-53.
[31] Lee W, Kwon TH, Kwon J, Kim JY, Lee C, Hong JI. Effect of main ligands on organic
photovoltaic performance of Ir(III) complexes. New J Chem 2011;35:2557-63.
[32] Wang R, Deng L, Zhang T, Li J. Substituent effect on the photophysical properties,
electrochemical properties and electroluminescence performance of orange-emitting iridium
complexes. Dalton Trans 2012;41:6833-41.
[33] Ho CL, Lam CS, Sun N, Ma D, Liu L, Yu ZQ, et al. Synthesis, characterization, and
electroluminescent properties of iridium(III) 2-phenylpyridine-type complexes containing
trifluoromethyl substituents and various main-group moieties. Isr J Chem 2014;54:999-1014.
[34] Ho CL, Wong WY, Zhou GJ, Yao B, Xie Z, Wang L. Solution-processible multi-component
cyclometalated iridium phosphors for high-efficiency orange-emitting OLEDs and their potential
use as white light sources. Adv Funct Mater 2007;17:2925-36.
[35] Takizawa SY, Aboshi R, Murata S. Photooxidation of 1,5-dihydroxynaphthalene with iridium
complexes as singlet oxygen sensitizers. Photochem Photobiol Sci 2011;10:895-903.
[36] Abdel-Shafi AA, Bourdelande JL, Ali SS. Photosensitized generation of singlet oxygen from
rhenium(I) and iridium(III) complexes. Dalton Trans 2007;251:2510-6.
[37] Demas JN, Degraff BA, Xu W. Modeling of luminescence quenching-based sensors: comparison
of multisite and nonlinear gas solubility models. Anal Chem 1995;67:1377-80.
[38] Nelissen HF, Kercher M, De Cola L, Feiters MC, Nolte RJ. Photoinduced electron transfer
between metal-coordinated cyclodextrin assemblies and viologens. Chem
2002;8:5407-14.
-
Eur J
[39] Huynh L, Wang Z, Yang J, Stoeva V, Lough A, Ian Manners A, et al. Evaluation of
phosphorescent rhenium and iridium complexes in polythionylphosphazene films for oxygen
sensor applications. Chem Mater 2005;17:4756-73.
[40] Xu W, McDonough III RC, Langsdorf B, Demas J, DeGraff B. Oxygen sensors based on
luminescence quenching: interactions of metal complexes with the polymer supports. Anal Chem
1994;66:4133-41.
[41] McGee KA, Mann KR. Inefficient crystal packing in chiral [Ru(phen)3](PF6)2 enables oxygen
molecule quenching of the solid-state mlct emission. J Am Chem Soc 2009;131:1896-902.
[42] Fernandez-Sanchez J, Roth T, Cannas R, Nazeeruddin MK, Spichiger S, Graetzel M, et al. Novel