Fig. 2 Most stable conformers of peptide 7 (a) and 1 : 1 complex of 7 and DAP (b) optimized at the B3LYP/6-31G* level. Side chains are shown as
lines for clarification. Red dotted line: intramolecular hydrogen bonds for inducing the b-hairpin, blue dotted lines: intermolecular hydrogen bonds
for DNA-like base pairing.
a solution of peptide 7 and DAP (1 : 1, 2.0 ꢂ 10ꢀ3 M, Fig. 1)
shows a positive ICD around 275 nm and a negative CD below
230 nm, similar to peptide 7. Surprisingly, a new ICD,
corresponding to the absorption band of DAP, is present at
around 290 nm. This result suggests that the 1 : 1 complex
is so stable that the chiral environment of the b-hairpin
structure binds to the non-covalently bonded DAP through
complementary hydrogen bonds.
3 (a) A. G. Cochran, R. T. Tong, M. A. Starovasnik, E. J. Park,
R. S. McDowell, J. E. Theaker and N. J. Skelton, J. Am. Chem.
Soc., 2001, 123, 625–632; (b) S. J. Russell and A. G. Cochran,
J. Am. Chem. Soc., 2000, 122, 12600.
4 (a) G. Platt, C.-W. Chung and M. S. Searle, Chem. Commun., 2001,
1162; (b) I. Pozdnyakova, J. Guidry and P. Wittung-Stafshede,
J. Am. Chem. Soc., 2000, 122, 6337.
5 (a) R. Rai, S. Raghothama and P. Balaram, J. Am. Chem. Soc.,
2006, 128, 2675; (b) M. D. Shults, D. A. Pearce and B. Imperiali,
J. Am. Chem. Soc., 2003, 125, 10591; (c) S. C. Shankaramma,
K. Moehle, S. James, J. W. Vrijbloed, D. Obrecht and
Computational calculations also support the stable b-hairpin
secondary structure of peptide 7 and its 1 : 1 complex. Thus,
conformational searches of peptide 7 by semi-empirical
calculations showed that the b-hairpin conformer is the most
stable (Fig. 2). Likewise, conformational searches of the 1 : 1
complex with restriction of the intermolecular hydrogen bonds
between the thymine moiety of 7 and DAP afforded the
b-hairpin structure as the most stable conformer.
J.
A.
Robinson,
Chem.
Commun.,
2003,
1842;
(d) S. R. Gilbertson, S. E. Collibee and A. Agarkov, J. Am. Chem.
Soc., 2000, 122, 6522; (e) J. F. Espinosa and S. H. Gellman, Angew.
Chem., Int. Ed., 2000, 39, 2330; (f) S. J. Miller, G. T. Copeland,
N. Papaioannou, T. E. Horstmann and E. M. Ruel, J. Am. Chem.
Soc., 1998, 120, 1629; (g) B. Imperiali, S. L. Fisher, R. A. Moats
and T. J. Prins, J. Am. Chem. Soc., 1992, 114, 3182.
6 (a) A. S. M. Ressurreic¸ ao, A. Bordessa, M. Civera, L. Belvisi,
C. Gennari and U. Piarulli, J. Org. Chem., 2008, 73, 652;
´
´
, M. Cakic, K. A. Mahmoud, Y.-N. Liu,
(b) L. Barisic
H.-B. Kraatz, H. Pritzkow, S. I. Kirin, N. Metzler-Nolte and
V. Rapic, Chem.–Eur. J., 2006, 12, 4965; (c) J. S. Nowick and
In conclusion, the artificial DNA base-pairing amino acid
T
aa successfully induces a b-hairpin secondary structure when
´
incorporated into peptide chains. The b-hairpin structure of
peptide 7 is so stable that the thymine moiety recognizes
the complementary DAP molecule through intermolecular
hydrogen bonds without steric repulsions and undesirable
intermolecular hydrogen bonds of peptide chains. This work
demonstrates the molecular-recognition properties of artificial
b-hairpin peptides containing DNA base-pairing amino acids,
which could lead to a novel bioorganic supramolecular
architecture with DNAs based on complementary
hydrogen bonds.
J. O. Brower, J. Am. Chem. Soc., 2003, 125, 876; (d) T. Moriuchi,
K. Yoshida and T. Hirao, Organometallics, 2001, 20, 3101;
(e) H. A. Lashuel, S. R. LaBrenz, L. Woo, L. C. Serpell and
J. W. Kelly, J. Am. Chem. Soc., 2000, 122, 5262;
(f) A. B. Gretchikhine and M. Y. Ogawa, J. Am. Chem. Soc.,
1996, 118, 1543; (g) L. Ulysse, J. Cubillos and J. Chmielewski,
´
J. Am. Chem. Soc., 1995, 117, 8466; (h) H. Dıaz, K. Y. Tsang,
D. Choo, J. R. Espina and J. W. Kelly, J. Am. Chem. Soc., 1993,
115, 3790.
7 J. D. Watson and F. H. C. Crick, Nature, 1953, 171, 737.
8 K. R. Buszek and N. Brown, J. Org. Chem., 2007, 72, 3125.
9 (a) Y. N. Chirgadze and N. A. Nevskaya, Biopolymers, 1976, 15,
607; (b) Y. N. Chirgadze and N. A. Nevskaya, Biopolymers, 1976,
15, 627.
10 N. Greenfield and G. D. Fasman, Biochemistry, 1969, 8, 4108.
11 (a) H. C. Ong, J. F. Arambula, S. R. Ramisetty, A. M. Baranger
and S. C. Zimmerman, Chem. Commun., 2009, 668;
(b) P. Chattopadhyay and P. S. Pandey, Tetrahedron Lett., 2008,
49, 4640; (c) S. Gadde, D.-M. S. Islam, C. A. Wijesinghe,
N. K. Subbaiyan, M. E. Zandler, Y. Araki, O. Ito and
F. D’Souza, J. Phys. Chem. C, 2007, 111, 12500; (d) Z. Shi,
Y. Li, H. Gong, M. Liu, S. Xiao, H. Liu, H. Li, S. Xiao and
D. Zhu, Org. Lett., 2002, 4, 1179; (e) F. H. Beijer, R. P. Sijbesma,
J. A. J. M. Vekemans, E. W. Meijer, H. Kooijman and A. L. Spek,
J. Org. Chem., 1996, 61, 6371.
This work was financially supported in part by a Grant-
in-Aid for Young Scientists (Start-up) from the Japan Society
for the Promotion of Science and a KANEKA Corporation
Award in Synthetic Organic Chemistry, Japan. The authors
gratefully acknowledge Prof. K. Ariga and Prof. M. Higuchi
for experimental assistance.
Notes and references
1 (a) E. Lacroix, T. Kortemme, M. L. de la Paz and L. Serrano, Curr.
Opin. Struct. Biol., 1999, 9, 487; (b) S. H. Gellman, Curr. Opin.
Chem. Biol., 1998, 2, 717; (c) F. Blanco, M. Ramı
´
L. Serrano, Curr. Opin. Struct. Biol., 1998, 8, 107.
2 (a) J. J. Truglio, E. Karakas, B. Rhau, H. Wang,
M. J. DellaVecchia, B. Van Houten and C. Kisker, Nat. Struct.
Mol. Biol., 2006, 13, 360; (b) D. Gai, R. Zhao, D. Li,
C. V. Finkielstein and X. S. Chen, Cell, 2004, 119, 47.
rez-Alvarado and
12 B. A. Blight, A. Camara-Campos, S. Djurdjevic, M. Kaller,
D. A. Leign, F. M. McMillan, H. McNab and A. M. Z. Slawin,
J. Am. Chem. Soc., 2009, 131, 14116.
13 GAs-Fit: A program that uses an evolutionary algorithm to solve
the standard equations for titration methods, suitable even for
large binding constants (http://gasfit.djurdjevic.org.uk).
ꢁc
This journal is The Royal Society of Chemistry 2010
Chem. Commun., 2010, 46, 2947–2949 | 2949