First author et al.
Report
1984, 1284-1285; (c) Hatanaka, S.-I.; Niimura, Y.; Takishima, K.;
Sugiyama, J. (2R)-2-Amino-6-hydroxy-4-hexynoic Acid, and Related
Amino Acids in the Fruiting Bodies of Amanita miculifera. Phytochem-
istry, 1998, 49, 573-578.
Lachance, B.; Salvador, R. L.; Simon, D. Z. Synthesis and Evaluation of
Potential Glutamine Antagonists. Eur. J. Med. Chem. 1987, 22, 179-186.
Casara, P.; Jund, K.; Bey, P. General Synthetic Access to α-Allenyl
Amines and α-Allenyl-α-Aminoacids as Potential Enzyme Activated Ir-
reversible Inhibitors of PLP Dependent Enzymes. Tetrahedron Lett.
1984, 25, 1891-1894.
Acknowledgement
Financial support from the National Natural Science Foundation
of China (grant no. 21690063 to S.M., and grant no. 21901158 to
W.Z.) are greatly appreciated. We thank Mr. Huanan Wang in this
group for reproducing the results of (R)-3’d, (R)-3m and (R)-17k,
presented in Table 2, Table 3, and Table 4, respectively
References
Castelhano, A. L.; Pliura, D. H.; Taylor, G. J.; Hsieh, K. C.; Krantz, A. Al-
lenic Suicide Substrates. New Inhibitors of Vitamin B6 Linked Decarbox-
ylases. J. Am. Chem. Soc. 1984, 106, 2734-2735.
(a) Ager, D. J. Amino Acids, Peptides and Proteins in Organic Chemistry,
Hughes, A. B., Wiley-VCH: Weinheim, 2009, Vol. 1, pp 495-526; (b) Bar-
ret, G. C.; Meienhofer, J. Chemistry and Biochemistry of the Amino Ac-
ids, Barret, G. C., Chapman and Hall: London & New York, 1985, pp
246-375.
For reviews, see: (a) Taggi, A. E.; Hafez, A. M.; Lectka, T. α-Imino Esters:
Versatile Substrates for the Catalytic, Asymmetric Synthesis of α- and
β-Amino Acids and β-Lactams. Acc. Chem. Res. 2003, 36, 10-19; (b)
Nájera, C.; Sansano, J. M. Catalytic Asymmetric Synthesis of α-Amino
Acids. Chem. Rev. 2007, 107, 4584-4671; (c) Weiner, B.; Szymański, W.;
Janssen, D. B.; Minnaard, A. J.; Feringa, B. L. Recent Advances in the
Catalytic Asymmetric Synthesis of β-Amino Acids. Chem. Soc. Rev.
2010, 39, 1656-1691.
For seminal reports on Pd-catalyzed asymmetric allenylation with ma-
lonates generating axial and/or central chirality, see: (a) Imada, Y.;
Ueno, K.; Kutsuwa, K.; Murahashi, S.-I. Palladium-Catalyzed
Asymmetric Alkylation of 2,3-Alkadienyl Phosphates. Synthesis of
Optically Active 2-(2,3-Alkadienyl)malonates. Chem. Lett. 2002, 31,
140-141; (b) Trost, B. M.; Fandrick, D. R.; Dinh, D. C. Dynamic Kinetic
Asymmetric Allylic Alkylations of Allenes. J. Am. Chem. Soc. 2005, 127,
14186-14187; (c) Li, Q.; Fu, C.; Ma, S. Catalytic Asymmetric Allenylation
of Malonates with the Generation of Central Chirality. Angew. Chem.
Int. Ed. 2012, 51, 11783-11786; (d) Dai, J.; Duan, X.; Zhou, J.; Fu, C.; Ma,
S. Catalytic Enantioselective Simultaneous Control of Axial Chirality
and Central Chirality in Allenes. Chin. J. Chem. 2018, 36, 387-391; (e)
Song, S.; Zhou, J.; Fu, C.; Ma, S. Catalytic Enantioselective Construction
of Axial Chirality in 1,3-Disubstituted Allenes. Nat. Commun. 2019, 10,
507; (f) Song, S.; Ma, S. Highly Selective Nucleophilic 4-Aryl-2,3-
allenylation of Malonates. Chin. J. Chem. 2020, 38, 1233-1238. For Pd-
catalyzed asymmetric allenylation with α-hydroxyketones, see: (g)
Trost, B. M.; Schultz, J. E.; Chang, T.; Maduabum, M. R. Chemo-, Regio-,
Diastereo-, and Enantioselective Palladium Allylic Alkylation of 1,3-
Dioxaboroles as Synthetic Equivalents of α-Hydroxyketones. J. Am.
Chem. Soc. 2019, 141, 9521-9526. For Pd-catalyzed asymmetric
allenylation with amines, see: (h) Wan, B.; Ma, S. Enantioselective
Decarboxylative Amination: Synthesis of Axially Chiral Allenyl Amines.
Angew. Chem. Int. Ed. 2013, 52, 441-445; (i) Li, Q.; Fu, C.; Ma, S.
Palladium-Catalyzed Asymmetric Amination of Allenyl Phosphates:
Enantioselective Synthesis of Allenes with an Additional Unsaturated
Unit. Angew. Chem. Int. Ed. 2014, 53, 6511-6514.
For examples of α-imino carboxylates in asymmetric allylic alkylation
reaction, see: (a) Wei, L.; Xu, S.-M.; Zhu, Q.; Che, C.; Wang, C.-J. Syner-
gistic Cu/Pd Catalysis for Enantioselective Allylic Alkylation of Aldimine
Esters: Access to α,α-Disubstituted α-Amino Acids. Angew. Chem. Int.
Ed. 2017, 56, 12312-12316; (b) Huo, X.; He, R.; Fu, J.; Zhang, J.; Yang,
G.; Zhang, W. Stereoselective and Site-Specific Allylic Alkylation of
Amino Acids and Small Peptides via a Pd/Cu Dual Catalysis. J. Am. Chem.
Soc. 2017, 139, 9819-9822; (c) Wei, L.; Zhu, Q.; Xu, S.-M.; Chang, X.;
Wang, C.-J. Stereodivergent Synthesis of α,α-Disubstituted α-Amino
Acids via Synergistic Cu/Ir Catalysis. J. Am. Chem. Soc. 2018, 140, 1508-
1513; (d) Huo, X.; Zhang, J.; Fu, J.; He, R.; Zhang, W. Ir/Cu Dual Catalysis:
Enantio- and Diastereodivergent Access to α,α-Disubstituted α-Amino
Acids Bearing Vicinal Stereocenters. J. Am. Chem. Soc. 2018, 140, 2080-
2084; (e) Wei, L.; Xiao, L.; Wang, C.-J. Synergistic Cu/Pd Catalysis for
Enantioselective Allylation of Ketimine Esters: The Direct Synthesis of
α-Substituted α-Amino Acids and 2H-Pyrrols. Adv. Synth. Catal. 2018,
360, 4715-4719; (f) Huo, X.; Fu, J.; He, X.; Chen, J.; Xie, F.; Zhang, W.
Pd/Cu Dual Catalysis: Highly Enantioselective Access to α-Substituted
α-Amino Acids and α-Amino Amides. Chem. Common. 2018, 54, 599-
602; (g) Liu, P.; Huo, X.; Li, B.; He, R.; Zhang, J.; Wang, T.; Xie, F.; Zhang,
W. Stereoselective Allylic Alkylation of 1-Pyrroline-5-carboxylic Esters
via a Pd/Cu Dual Catalysis. Org. Lett. 2018, 20, 6564-6568; (h) He, R.;
Huo, X.; Zhao, L.; Wang, F.; Jiang, L.; Liao, J.; Zhang, W. Stereodivergent
Pd/Cu Catalysis for the Dynamic Kinetic Asymmetric Transformation of
Racemic Unsymmetrical 1,3-Disubstituted Allyl Acetates. J. Am. Chem.
Soc. 2020, 142, 8097-8103. For DFT calculations on the structure of Cu-
metallated azomethine ylide: (i) Yan, X.-X.; Peng, Q.; Zhang, Y.; Zhang,
Rivera-Fuentes, P.; Diederich, F. Allenes in Molecular Materials. Angew.
Chem. Int. Ed. 2012, 51. 2818-2828.
Hoffmann-Röder, A.; Krause, N. Synthesis and Properties of Allenic
Natural Products and Pharmaceuticals. Angew. Chem. Int. Ed. 2004, 43,
1196-1216.
For reviews on chemical transformation of allenes see: (a) Zimmer, R.;
Dinesh, C. U.; Nandanan, E.; Khan, F. A. Palladium-Catalyzed Reactions
of Allenes. Chem. Rev. 2000, 100, 3067-3125; (b) Bates, R. W.;
Satcharoen, V. Nucleophilic Transition Metal Based Cyclization of
Allenes. Chem. Soc. Rev. 2002, 31, 12-21; (c) Sydnes, L. K. Allenes from
Cyclopropanes and Their Use in Organic Synthesis-Recent
Developments. Chem. Rev. 2003, 103, 1133-1150; (d) Wei, L.-L.; Xiong,
H.; Hsung, R. P. The Emergence of Allenamides in Organic Synthesis.
Acc. Chem. Res. 2003, 36, 773-782; (e) Ma, S. Some Typical Advances
in the Synthetic Applications of Allenes. Chem. Rev. 2005, 105, 2829-
2871; (f) Ma, S. Palladium-Catalyzed Two- or Three-Component
Cyclization of Functionalized Allenes. Top. Organomet. Chem. 2005, 14,
183-210; (g) Ma, S. Electrophilic Addition and Cyclization Reactions of
Allenes. Acc. Chem. Res. 2009, 42, 1679-1688; (h) Alcaide, B.;
Almendros, P.; Aragoncillo, C. Exploiting [2+2] Cycloaddition Chemistry:
Achievements with Allenes. Chem. Soc. Rev. 2010, 39, 783-816; (i) Yu,
S.; Ma, S. Allenes in Catalytic Asymmetric Synthesis and Natural
Product Syntheses. Angew. Chem. Int. Ed. 2012, 51, 3074-3112; (j) Lu,
T.; Lu, Z.; Ma, Z.-X.; Zhang, Y.; Hsung, R. P. Allenamides: A Powerful and
Versatile Building Block in Organic Synthesis. Chem. Rev. 2013, 113,
4862-4904; (k) Ye, J.; Ma, S. Palladium-Catalyzed Cyclization Reactions
of Allenes in the Presence of Unsaturated Carbon-Carbon Bonds. Acc.
Chem. Res. 2014, 47, 989-1000; (l) Alcaide, B.; Almendros, P. Gold-
Catalyzed Cyclization Reactions of Allenol and Alkynol Derivatives. Acc.
Chem. Res. 2014, 47, 939-952; (m) Yang, B.; Qiu, Y.; Bäckvall, J.-E.
Control of Selectivity in Palladium(II)-Catalyzed Oxidative
Transformations of Allenes. Acc. Chem. Res. 2018, 51, 1520-1531; (n)
Liu, L.; Ward, R. M.; Schomaker, J. M. Mechanistic Aspects and
Synthetic Applications of Radical Additions to Allenes. Chem. Rev. 2019,
119, 12422-12490; (o) Liu, Y.; Bandini, M. Nickel Catalyzed
Functionalization of Allenes. Chin. J. Chem. 2019, 37, 431-441; (p) Fu,
L.; Greßies, S.; Chen, P.; Liu, G. Recent Advances and Perspectives in
Transition Metal-Catalyzed 1,4-Functionalizations of Unactivated 1,3-
Enynes for the Synthesis of Allenes. Chin. J. Chem. 2020, 38, 91-100.
(a) Chilton, W. S.; Tsou, G.; Kirk, L.; Benedict, R. G. A Naturally-Occur-
ring Allenio Amino Acid. Tetrahedron Lett. 1968, 9, 6283-6284; (b)
Baldwin, J. E.; Adlington, R. M.; Basak, A. Allene Transfer Reactions. A
New Synthesis of Terminal Allenes. J. Chem. Soc., Chem. Commun.
© 2021 SIOC, CAS, Shanghai, & WILEY-VCH GmbH
Chin. J. Chem. 2021, 39, XXX-XXX