Q. Gao et al. / Inorganic Chemistry Communications 12 (2009) 1238–1241
1241
(h) B. Gómez-Lor, E. Gutiérrez-Puebla, M. Iglesias, M.A. Monge, C. Ruiz-Valero, N.
Snejko, Inorg. Chem. 41 (2002) 2429;
(i) Z.-G. Guo, Y.-F. Li, W.-B. Yuan, X.-D. Zhu, X.-F. Li, R. Cao, Eur. J. Inorg. Chem.
(2008) 1326;
gand is a good candidate for the construction of such 4-connected
diamond-like networks. The intensive blue emission suggests that
1 may be potential fluorescent material.
(j) C. Chen, Y.-L. Liu, S.-H. Wang, G.-H. Li, M.-H. Bi, Z. Yi, W.-Q. Pang, Chem. Mater.
18 (2006) 2950.
[4] (a) H.K. Chae1, D.Y. Siberio-Pérez, J. Kim, Y. Go, M. Eddaoudi, A.J. Matzger, M.
O’Keeffe, O.M. Yaghi, Nature 427 (2004) 523;
Acknowledgments
This work was supported by grants from the National Natural
Science Foundation of China and the Natural Science Foundation
of Fujian Province.
(b) D.-F. Sun, Y.X. Ke, T.M. Mattox, S. Parkin, H.-C. Zhou, Inorg. Chem. 45 (2006)
7566;
(c) J. Kim, B.-L. Chen, T.M. Reineke, H.-L. Li, M. Eddaoudi, D.B. Moler, M.
O’Keeffe, O.M. Yaghi, J. Am. Chem. Soc. 123 (2001) 8239;
(d) T.K. Ronson, J.L. Fisher, L.P. Harding, M.J. Hardie, Angew. Chem., Int. Ed. 46
(2007) 9086;
Appendix A. Supplementary material
(e) S.J. Garibay, J.R. Stork, Z.-Q. Wang, S.M. Cohen, S.G. Telfer, Chem. Commun.
(2007) 4881;
(f) S.B. Choi, M.J. Seo, M. Cho, Y. Kim, M.K. Jin, D.-Y. Jung, J.-S. Choi, W.-S. Ahn,
J.L.C. Rowsell, Jaheon Kim, Cryst. Growth Des. 7 (2007) 2290;
(g) R. Sun, S.-N. Wang, H. Xing, J.-F. Bai, Y.-Z. Li, Yi. Pan, X.-Z. You, Inorg. Chem.
46 (2007) 8451;
Supplementary data associated with this article can be found, in
(h) R. Sun, Y.-Z. Li, J. -F Bai, Y. Pan, Cryst. Growth Des. 7 (2007) 890.
[5] (a) S.M. Humphrey, S.E. Oungoulian, J.W. Yoon, Y.K. Hwang, E.R. Wisea, J.-S.
Chang, Chem. Commun. (2008) 2891;
References
[1] (a) M. Eddaoudi, J. Kim, N. Rosi, D. vodka, J. Wachter, M. O’Keeffe, O.M. Yaghi,
Science 295 (2002) 469;
(b) M.J. Plater, M.R.St.J. Foreman, E. Coronado, C.J. Gomez-Garcia, A.M.Z.
Slawin, J. Chem. Soc., Dalton Trans. (1999) 4209;
(c) M.J. Plater, M.R.St.J. Foreman, T. Gelbrich, M.B. Hursthouse, J. Chem. Cryst.
30 (2000) 155;
(b) R. Matsuda, R. Kitaura, S. Kitagawa, Y. Kubota, R.V. Belosludov, T.C.
Kobayashi, H. Salamoto, T. Chiba, M. Takata, Y. Kawazoe, Y. Mita, Nature 436
(2005) 238;
(d) M.J. Plater, M.R.St.J. Foreman, J.M.S. Skakle, J. Chem. Cryst. 30 (2000) 449.
[6] Synthesis of 1: The ligand H3ptc was synthesized according to the literature
[7]. A aqueous mixture of InCl34H2O (74.0 mg, 0.25 mmol), H3ptc (102 mg,
0.25 mmol), NaOH (10 mg, 0.25 mmol) and H2O (8.0 ml) in 30-ml Teflon-lined
stainless steel vessel was heated at 150 °C for 96 h, and then the reaction
system was cooled to room temperature at a rate of 6 °C hꢀ1. Colorless block
(c) C.-D. Wu, W.-B. Lin, Angew. Chem., Int. Ed. 44 (2005) 1958;
(d) D.-F. Sun, S.-Q. Ma, Y.-X. Ke, D.J. Collins, H.-C. Zhou, J. Am. Chem. Soc. 128
(2006) 3896;
(e) M. Yoshizawa, M. Tamura, M. Fujita, Science 312 (2006) 251;
(f) S.-C. Xiang, X.-T. Wu, J.-J. Zhang, R.-B. Fu, S.-M. Hu, X.-D. Zhang, J. Am.
Chem. Soc. 127 (2005) 16352;
crystals of
1 were obtained (yield 60% based on InCl3). Anal. Calcd for
(g) L.-H. Gao, M. Guan, K.-Z. Wang, L.-P. Jin, C.-H. Huang, Eur. J. Inorg. Chem.
(2006) 3731.
C21H14InO8P (%): C, 46.70; H, 2.61; found (%): C, 46.78; H, 2.53. IR (KBr):
3448(br. s), 1703(s), 1604(w), 1564(w), 1396(s), 1268(s), 1166(m), 1106(s),
[2] (a) R.K. Feller, A.K. Cheetham, Dalton Trans. (2008) 2034;
(b) H.-W. Wang, S. Gao, L.-H. Huo, S.-W. Ng, J.G. Zhao, Cryst. Growth Des. 8
(2008) 665;
(c) J.-L. Du, T.-L. Hu, J.-R. Li, S.-M. Zhang, X.-H. Bu, Eur. J. Inorg. Chem. (2008)
1059.
[3] (a) Z.-Z. Lin, F.-L. Jiang, L. Chen, D.-Q. Yuan, Y.-F. Zhou, M.-C. Hong, Eur. J. Inorg.
Chem. (2005) 77;
707(m), 576(m) cmꢀ1
.
[7] W.N. Chou, M. Pomerantz, J. Org. Chem. 56 (1991) 2762.
[8] Crystal data of 1: C21H14InO8P, Mr = 540.11, monoclinic system, space group
P21, a = 10.527 (2) Å, b = 9.3735 (17) Å, c = 10.527 (2) Å, b = 92.29, V = 1037.9
(3) Å3, Z = 4, Dc = 1.728 g/cm3,
l
= 2.267 mmꢀ1, F000 = 536, Flack’s parameter
v
= ꢀ0.04(3), Rigaku Mercury CCD area-detector, Mo
Ka radiation,
k = 0.71073 Å, T = 293(2) K, 2hmax = 55.0°, 7877 reflections collected, 4175
unique (Rint = 0.0578). Final GooF = 0.934, R1 = 0.0468, wR2 = 0.0794. R indices
(b) Z.-Z. Lin, F.-L. Jiang, L. Chen, D.-Q. Yuan, M.-C. Hong, Inorg. Chem. 44 (2005)
73;
(c) Z.-Z. Lin, F.-L. Jiang, L. Chen, C.-Y. Yue, D.-Q. Yuan, A.-J. Lan, M.-C. Hong,
Cryst. Growth Des. 7 (2007) 1712;
(d) Z.-Z. Lin, J.-H. Luo, M.-C. Hong, R.-H. Wang, L. Han, R. Cao, J. Solid State
Chem. 177 (2004) 2494;
(e) Z.-Z. Lin, L. Chen, F.-L. Jiang, M.-C. Hong, Inorg. Chem. Commun. 8 (2005) 199;
(f) Y.-L. Liu, J.F. Eubank, A.J. Cairns, J. Eckert, V. Ch. Kravtsov, R. Luebke, M.
Eddaoudi, Angew. Chem., Int. Ed. 46 (2007) 3278;
(g) J.L. Belof, A.C. Stern, M. Eddaoudi, B. Space, J. Am. Chem. Soc. 129 (2007)
15202;
based on 3420 reflections with I > 2r
(I) (refinement on F2). The structure was
solved with direct methods and refined on F2 with full-matrix least-squares
methods using SHELXS-97 and SHELXL-97 programs, respectively [9]. All non-
hydrogen atoms were refined anisotropically. The hydrogen atoms belonging
to the water molecule O8 were found in the electron-density map. The other
hydrogen atoms were generated geometrically.
[9] G. M. Sheldrick, SHELXTL: Structure Determination Software Programs, Bruker
Analytical X-ray System Inc., Madison, WI, USA, 1997.
[10] V.A. Blatov, L. Carlucci, G. Ciani, D.M. Proserpio, CrystEngComm 6 (2004) 377.