1) a) Tiwari, A.; Maiti, P. TGR5: an emerging bile acid G-protein coupled receptor target for the potential treatment of metabolic disorders. Drug. Discov. Today
2009, 14, 523-530. (b) Zhong, M. TGR5 as a Therapeutic Target for Treating Obesity. Curr. Top. Med. Chem. 2010, 10, 386-396. (c) Pols, T.W.; Noriega, L. G.;
Nomura, M.; Auwerx, J.; Schoonjans, K. The bile acid membrane receptor TGR5 as an emerging target in metabolism and inflammation. J. Hepatol. 2011, 54,
1263-1272. (d) Xu, Y. Bile Acid Receptor Modulators in Metabolic Diseases. Annu. Rep. Med. Chem. 2011, 46, 69-87.
2) Katsuma, S.; Hirasawa, A.; Tsujimoto, G. Bile acids promote glucagon-like peptide-1 secretion through TGR5 in a murine enteroendocrine cell line STC-1.
Biochem. Biophys. Res. Commun. 2005, 329, 386-390.
3) Keitel, V.; Reinehr, R.; Gatsios, P.; Rupprecht, C.; Görg, B.; Selbach, O.; Häussinger, D.; Kubitz, R. The G-protein coupled bile salt receptor TGR5 is expressed in
liver sinusoidal endothelial cells. Hepatology, 2007, 45. 695-704
4) (a) Watanabe, M.; Houten, S. M.; Mataki, C.; Christoffolete, M. A.; Kim, B. W.; Sato, H.; Messaddeq, N.; Harney, J. W.; Ezaki, O.; Kodama, T.; Schoonjans, K.;
Bianco, A. C.; Auwerx, J. Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation. Nature, 2006, 439, 484-489. (b) Brufau, G.;
Bahr, M. J.; Staels, B.; Claudel, T.; Ockenga, J.; Böker, K. H. W.; Murphy, E. J.; Prado, K.; Stellaard, F.; Manns, M. P.; Kuipers, F.; Tietge, U. T. F. Plasma bile acids
are not associated with energy metabolism in humans. Nutrition & Metabolism 2010, 7, 73.
5) Pols, T. W.; Nomura, M.; Harach, T.;Lo Sasso, G.; Oosterveer, M. H.; Thomas, C.; Rizzo, G.; Gioiello, A.; Adorini, L.; Pellicciari, R.; Auwerx, J.; Schoonjans, K. TGR5
Activation Inhibits Atherosclerosis by Reducing Macrophage Inflammation and Lipid Loading. Cell. Metab. 2011, 14, 747-757.
6) Pellicciari, R.; Gioiello, A.; Macchiarulo, A.; Thomas, C.; Rosatelli, E.; Natalini, B.; Sardella, R.; Pruzanski, M.; Roda, A.; Pastorini, E.; Schoonjans, K.; Auwerx, J.
Discovery of 6-Ethyl-23(S)-methylcholic Acid (S-EMCA, INT-777) as a Potent and Selective Agonist for the TGR5 Receptor, a Novel Target for Diabesity. J. Med.
Chem. 2009, 52, 7958-7961.
7) (a) Evans, K. A.; Budzik, B. W.; Ross, S. A.; Wisnoski, D. D.; Jin, J.; Rivero, R. A.; Vimal, M.; Szewczyk, G. R.; Jayawickreme, C.; Moncol, D. L.; Rimele, T. J.; Armour,
S. L.; Weaver, S. P.; Griffin, R. J.; Tadepalli, S. M.; M. R. Jeune, M. R.; T. W. Shearer, T. W.; Z. B. Chen, Z. B.; Chen, L.; Anderson, D. L.; Becherer, J. D.; De Los
Frailes, M.; Colilla, F. J. Discovery of 3-Aryl-4-isoxazolecarboxamides as TGR5 Receptor Agonists. J. Med. Chem. 2009, 52, 7962-7965. (b) Herbert, M. R.; Siegel, D.
L.; Staszewski, L.; Cayanan, C.; Banerjee, U.; Dhamija, S.; Anderson, J.; Fan, A.; Wang, L.; Rix, P.; Shiau, A. K.; Rao, T. S.; Noble, S. A.; Heyman, R. A.; Bischoff, E.;
Guha, M.; Kabakibi, A.; Pinkerton, A. B. Synthesis and SAR of 2-aryl-3-aminomethylquinolines as agonists of the bile acid receptor TGR5. Bioorg. Med. Chem.
Lett. 2010, 20, 5718-5721. (c) Budzik, B. W.; Evans, K. A.; Wisnoski, D. D.; Jin, J.; Rivero, R. A.; Szewczyk, G. R.; Jayawickreme, C.; Moncol, D. L.; Yu, H. Synthesis
and structure–activity relationships of a series of 3-aryl-4-isoxazolecarboxamides as a new class of TGR5 agonists. Bioorg. Med. Chem. Lett. 2010, 20, 1363-1367.
(d) Futatsugi, K.; Bahnck, K. B.; Brenner, M. B.; Buxton, J.; Chin, J. E.; Coffey, S. B.; Dubins, J.; Flynn, D.; Gautreau, D.; Guzman-Perez, A.; Hadcock, J. R.; Hepworth,
D.; Herr, M.; Hinchey, T.; Janssen, A. M.; Jennings, S. M.; Jiao, W.; Lavergne, S. Y.; Li, B.; Li, M.; Munchhof, M. J.; Orr, S. T. M.; Piotrowski, D. W.; Roush, N. S.;
Sammons, M.; Stevens, B. D.; Storer, G.; Wang, J.; Warmus, J. S.; Wei, L.; Wolford. A. C. Optimization of Triazole-based TGR5 Agonists Towards Orally Available
Agents. Med. Chem. Commun. 2012, ASAP. (e) Piotrowski, D. W.; Futatsugi, K.; Warmus, J. S.; Orr, S. T. M.; Freeman-Cook, K. D.; Londregan, A. T.; Wei, L.;
Jennings, S.; Herr, M.; Coffey, S. B.; Jiao, W.; Storer, G.; Hepworth, D.; Wang, J.; Lavergne, S. Y.; Chin, J. E.; Hadcock, J. R.; Brenner, M. B.; Wolford, A. C.; Janssen,
A. M.; Roush, N. S.; Buxton, J.; Hinchey, T.; Kalgutkar, A. M.; Sharma, R.; Flynn, D. A. Identification of Tetrahydropyrido[4,3-d]pyrimidine Amides as a New Class
of Orally Bioavailable TGR5 Agonists. ACS Med. Chem. Lett. 2012, ASAP.
8) Thomas, C.; Gioiello, A.; Noriega, L.; Strehle, A.; Oury, J.; Rizzo, G.; Macchiarulo, A.; Yamamoto, H.; Mataki, C.; Pruzanski, M.; Pellicciari, R.; Auwerx, J.;
Schoonjans, K. TGR5-Mediated Bile Acid Sensing Controls Glucose Homeostasis. Cell. Metab. 2009, 10, 167-177.
9) (a) Leeson, P. D., Springthorpe, B. The influence of drug-like concepts on decision-making in medicinal chemistry. Nat. Rev. Drug. Discov. 2007, 6, 881–90. (b)
Edwards M. P., Price D. A. Role of Physicochemical Properties and Ligand Lipophilicity Efficiency in Addressing Drug Safety Risks. Annu. Rep. Med. Chem. 2010,
45, 381–391.
10) TGR5 is a Gαs-protein coupled that, when stimulated, induces the activation of Adenylate Cyclase (AC), thereby resulting in increases of intracellular cAMP.
Agonists of TGR5 were identified using an in-vitro HTRF® (Homogeneous Time-Resolved Fluorescence) competitive immunoassay (HTRF® cAMP dynamic 2 Assay
Kit; Cis Bio cat # 62AM4PEC) which compares basal cAMP level in whole cells with cAMP levels reached after stimulation with compound. A tracer molecule, d2-
labeled cAMP, acts as an acceptor for a Europium (Eu3+) cryptate donor. A monoclonal anti-cAMP antibody has been labeled with Eu-cryptate so that when d2-
cAMP binds to the Mab, energy is transferred from the donor to the acceptor. The complex is excited by light at a wavelength of 340 nm and d2-cAMP binding
is detected by emission at wavelength 665 nm. In this assay, intracellular cAMP generated by TGR5 activation competes with the d2-cAMP tracer molecule for
binding to the labeled antibody, thus resulting in a change in fluorescence due to the prevention of energy transfer from the donor to the tracer. The
fluorescent signal is therefore inversely proportional to the concentration of cellular cAMP resulting from TGR5 activation. Detecting and calculating the ratio of
665 nm/620 nm emissions allowed sources of interference to be minimized (e.g. medium, colored compounds). The two cell line used in this assay, Flp-In™-
CHO-TO-humanTGR5 was constructed using the Flp-In™ T-REx™ System (pcDNA™5/FRT/TO Vector Kit Invitrogen cat# V6520-20). This expression system utilized
the tetracycline repressor gene to tightly regulate transcription of the gene of interest (GOI). In the absence of tetracycline, transcription is blocked and
therefore little or no TGR5 is expressed. However, when cells are induced with doxycycline (an analog of tetracycline), transcription of our GOI occurs and very
high levels of TGR5 are expressed. The screening cascade we developed utilized both the induced and uninduced cell lines. Test compounds were serially diluted
in 100 % dimethysulfoxide (DMSO) and spotted 0.5 μL/well to an empty, 384-well, polypropylene plate (Costar # 3654). A reported TGR5 agonist (S)-1-(6-fluoro-
2-methyl-3,4-dihydroquinolin-1(2H)-yl)-2-(isoquinolin-5-yloxy)ethanone (JP 2006063064) was used as a high control while DMSO was used as the low control.
Reference compounds were also used in the assay. All wells of the spotted compound plate were diluted 1:120 with 60 μL/well of assay media. 5 μL was