3962 Chem. Mater., Vol. 22, No. 13, 2010
Deschamps et al.
Scheme 1. Schematic Representation of the Topochemical
Principle for Diacetylene Polymerization
their very strong absorption appears in different regions
of the visible spectrum. The most frequent colors are
traditionally named ,blue. and ,red., with absorption
maxima at room temperature around 620 and 540 nm,
respectively. The same PDA (that is, with the same side
groups) can be found in both colors with a first order
transition between them.10-16 However, the geometrical
changes that must necessarily correspond to the large
absorption shifts are small, in fact, small enough in some
cases to have passed unnoticed in structural studies.17
Moreover, the different colors have very different emis-
sion properties, blue PDAs being virtually nonlumine-
scent and red ones showing a strong emission, at least at
low temperature.18
Synthesizing and studying PDAs with different colors
is a worthy undertaking for two main reasons: (i) funda-
mentally, it is important to understand how geometrical
changes affect the electronic properties of CPs, in parti-
cular the consequences of electronic correlations; (ii) in
The high order in PDA samples is due to their peculiar
(in fact, almost unique) polymerization process. Poly-
merization proceeds in the solid crystalline state and is a
topochemical reaction,7,8 meaning that all of the reaction
steps (initiation by formation of a dimer radical or radical
ion, and propagation) are under control of the reactive
site geometry and, more generally, of the overall mono-
mer crystal packing. In fact, the limiting step is usually
initiation, which is sketched in Scheme 1.9
€
(10) Chance, R. R.; Baughman, R. H.; Muller, H.; Eckhardt, C. J.
J. Chem. Phys. 1977, 67, 3616–3618.
(11) Eckhardt, H.; Eckhardt, C. J.; Yee, K. C. J. Chem. Phys. 1979, 70,
5498–5502.
(12) Koshihara, S.; Tokura, Y.; Takeda, K.; Koda, T.; Kobayashi, A.
J. Chem. Phys. 1990, 92, 7581–7588.
(13) Hankin, S. H. W.; Downey, M. J.; Sandman, D. J. Polymer 1992,
33, 5098–5101.
(14) Lio, A.; Reichert, A.; Ahn, D. J.; Nagy, J. O.; Salmeron, M.;
Charych, D. H. Langmuir 1997, 13, 6524–6532.
(15) Carpick, R. W.; Mayer, T. M.; Sasaki, D. Y.; Burns, A. R.
Langmuir 2000, 16, 4639–4647.
(16) Lee, D.-C.; Sahoo, S. K.; Cholli, A. L.; Sandman, D. J. Macro-
molecules 2002, 35, 4347–4355.
(17) Schott, M. J. Phys. Chem. B 2006, 110, 15864–15868.
Necessary (but not sufficient) conditions for the topo-
chemical initiation reaction to occur were identified early
on: (i) the translational period d of the monomer (see
˚
Scheme 1) must be in the range of 4.7 to 5.2 A; (ii) Rv must
˚
˚
be smaller than 4 A, with a lower limit of 3.4 A corre-
sponding to van der Waals contact between reacting
carbon atoms; (iii) the angle γ between the diacetylene
(DA) rod and the translational vector must be close to
45ꢀ. All three geometrical requirements should be met in
order to secure a close contact between the C1 atom of one
DA rod and the C4 atom of the neighboring rod, in the
reactive monomer crystal.2,3 These conditions can be
fulfilled by a judicious choice of the DA side groups,
noting that these groups contain most of the atoms in the
molecule and play a leading role in the monomer crystal
packing. Therefore, crystal engineering starting from a
known reactive DA can lead to new PDAs with new
properties.
ꢀ
ꢀ
(18) Lecuiller, R.; Berrehar, J.; Lapersonne-Meyer, C.; Schott, M.;
ꢁ
Ganiere, J.-D. Chem. Phys. Lett. 1999, 314, 255–260.
(19) (a) Muller, H.; Eckhardt, C. J. Mol. Cryst. Liq. Cryst. 1978, 45,
€
313–318. (b) Nallicheri, R. A.; Rubner, M. F. Macromolecules 1991,
24, 517–525. (c) Carpick, R. W.; Sasaki, D. Y.; Burns, A. R. Langmuir
2000, 16, 1270–1278.
(20) (a) Tieke, B.; Lieser, G.; Wegner, G. J. Polym. Sci., Polym. Chem.
Ed. 1979, 17, 1631–1644. (b) Okada, S.; Peng, S.; Spevak, W.;
Charych, D. Acc. Chem. Res. 1998, 31, 229–239. (c) Lu, Y.; Yang,
Y.; Sellinger, A.; Lu, M.; Huang, J.; Fan, H.; Haddad, R.; Lopez, G.;
Burns, A. R.; Sasaki, D. Y.; Shelnutt, J.; Brinker, C. J. Nature 2001,
410, 913–917. (d) Yuan, Z.; Lee, C.-W.; Lee, S.-H. Angew. Chem., Int.
Ed. 2004, 43, 4197–4200. (e) Peng, H.; Tang, J.; Pang, J.; Chen, D.;
Yang, L.; Ashbaugh, H. S.; Brinker, C. J.; Yang, Z.; Lu, Y. J. Am.
Chem. Soc. 2005, 127, 12782–12783. (f) Kim, J.-M.; Chae, S. K.; Lee,
Y. B.; Lee, J.-S.; Lee, G. S.; Kim, T.-Y.; Ahn, D. J. Chem. Lett. 2006,
35, 560–561. (g) Peng, H.; Tang, J.; Yang, L.; Pang, J.; Ashbaugh, H. S.;
Brinker, C. J.; Yang, Z.; Lu, Y. J. Am. Chem. Soc. 2006, 128, 5304–
5305. (h) Ahn, D. J.; Lee, S.; Kim, J.-M. Adv. Funct. Mater. 2008, 18,
1–14.
Another consequence of the topochemical character of
the polymerization reaction is that PDA chains contain
essentially no defect: a chemical impurity or a geometrical
mismatch due to a physical defect do not meet the
geometrical requirements, so the propagation reaction
stops without incorporation of the defect in the chain.
The quasi-perfect character of PDA chains is a conse-
quence of this peculiarity.
In quasi-1D systems, geometrical changes have a very
large influence on electronic properties. This is mani-
fested in PDAs by the existence of several ,colors.: all
of the PDA chains have the same chemical structure, yet
(21) (a) Mino, N.; Tamura, H.; Ogawa, K. Langmuir 1992, 8, 594–598.
(b) Song, J.; Cheng, Q.; Kopta, S.; Stevens, R. C. J. Am. Chem. Soc.
2001, 123, 3205–3213.
(22) Kew, S. J.; Hall, E. A. H. J. Mater. Chem. 2006, 16, 2039–2047.
(23) (a) Charych, D. H.; Nagy, J. O.; Spevak, W.; Bednarski, M. D.
Science 1993, 261, 585–588. (b) Reichert, A.; Nagy, J. O.; Spevak, W.;
Charych, D. J. Am. Chem. Soc. 1995, 117, 829–830. (c) Ma, Z.; Li, J.;
Liu, M.; Cao, J.; Zou, Z.; Tu, J.; Jiang, L. J. Am. Chem.. Soc. 1998, 120,
12678–12679. (d) Li, Y.; Ma, B.; Fan, Y.; Kong, X.; Li, J. Anal. Chem.
2002, 74, 6349–6354. (e) Orynbayeva, Z.; Kolusheva, S.; Livneh, E.;
Lichtenshtein, A.; Nathan, I.; Jelinek, R. Angew. Chem., Int. Ed. 2005,
44, 1092–1096. (f) Ma, G.; Cheng, Q. Langmuir 2005, 21, 6123–6126.
(g) Kim, J.-M.; Lee, Y. B.; Yang, D. H.; Lee, J.-S.; Lee, G. S.; Ahn, D. J.
J. Am. Chem. Soc. 2005, 127, 17580–17581. (h) Nie, Q.; Zhang, Y.;
Zhang, J.; Zhang, M. J. Mater. Chem. 2006, 16, 546–549. (i) Yoon, J.;
Chae, S. K.; Kim, J.-M. J. Am. Chem. Soc. 2007, 129, 3038–3039. (j)
Reppy, M. A.; Pindzola, B. A. Chem. Commun. 2007, 4317–4338. (k)
Lee, S.; Kim, J.-M. Macromolecules 2007, 40, 9201–9204. (l) Scindia,
Y.; Silbert, L.; Volinsky, R.; Kolusheva, S.; Jelinek, R. Langmuir 2007,
23, 4682–4687.
(7) Hirshfield, F. L.; Schmidt, G. M. J. J. Polym. Sci., Part A 1964, 2,
2181–2190.
(8) Kaiser, J.; Wegner, G.; Fischer, E. W. Isr. J. Chem. 1972, 10, 157–
171.
(9) Sixl, H. Adv. Polym. Sci. 1984, 63, 49–90.