pubs.acs.org/joc
that rapidly build stereochemical complexity through ring
Stereospecific Synthesis of Alkylidenecyclopropanes
via Sequential Cyclopropene Carbomagnesation/1,3-
Carbon Shift
expansion,2 cycloadditions,3 or ring-opening reactions.4
While a number of methods for generating alkylidene-
cyclopropanes5 have been reported, access to enantio-
merically enriched alkylidenecyclopropanes has been
limited.6
Xiaocong Xie, Zhe Yang, and Joseph M. Fox*
An early approach to nonracemic alkylidenecyclopro-
panes utilized the stereospecific, formal [1,3] carbon shift
of Fiest’s ester, a methylenecyclopropane which is readily
available in enantiomerically pure form.7 However, the
preparative utility of such rearrangements of methylenecy-
clopropanes to alkylidenecyclopropanes is typically limited
by the need for pyrolytic conditions.8 Studies by Gardner,9
Creary,10 and Nakamura11 have shown that aryl-10 or alkoxy-
substituted9,11 methylenecyclopropanes rearrange to alkyli-
denecyclopropanes under mild conditions. However, the
stereospecificity of the rearrangements of methylenecyclopro-
panes withstabilizing substitutentshad notbeentested. More-
over, there was no method to access enantiomerically
enriched methylenecyclopropanes with substituents that
facilitate the [1,3]-carbon shift reaction.
Our group had previously demonstrated that enantiomeri-
cally enriched methylenecyclopropanes (e.g., 2) canbeobtained
by addition of Grignard reagents to chiral cyclopropenes
(e.g., 1) with allylic ether leaving groups (Scheme 1).12 Con-
temporaneously, Marek reported Grignard reagent addition
to resolved cyclopropenylcarbinols to form chiral alkylidene-
cyclopropanes.6c-f We anticipated that the aromatic substituents
of methylenecyclopropenes 2 would facilitate the rearrangement
Brown Laboratories, Department of Chemistry and
Biochemistry, University of Delaware, Newark 19716
*jmfox@udel.edu
Received February 20, 2010
Alkylidenecyclopropanes can be synthesized from enantio-
merically enriched cyclopropene derivatives with >99%
stereotransfer and good to excellent yield. The protocol
comprises the stereoselective reaction of Grignard reagents
with 1-alkoxymethyl-3-hydroxymethylcyclopropenes and a
stereospecific [1,3] carbon shift reaction.
Alkylidenecyclopropanes have been the subject of con-
siderable investigation because of their high strain energy
and unique reactivity.1 The utility of chiral alkylidenecyclo-
propanes is exemplified by stereospecific transformations
(5) (a) Rahman, W.; Kuivila, H. G. J. Org. Chem. 1966, 31, 772. (b) Satoh,
T.; Saito, S. Tetrahedron Lett. 2004, 45, 347. (c) Ma, S.; Lu, L.; Zhang, J. J.
Am. Chem. Soc. 2004, 126, 9645. (d) Meijs, G. F.; Eichinger, P. C. H.
Tetrahedron Lett. 1987, 28, 5559. (e) Stafford, J. A.; McMurry, J. E.
Tetrahedron Lett. 1988, 29, 2531. (f) Danheiser, R. L.; Lee, T. W.;
Menichincheri, M.; Brunelli, S.; Nishiuchi, M. Synlett 1997, 469. (g) Bernard,
A. M.; Frongia, A.; Piras, P. P.; Secci, F. Synlett 2004, 1064. (h) Bigeault, J.;
Giordano, L.; de Riggi, I.; Gimbert, Y.; Buono, G. Org. Lett. 2007, 9, 3567.
(i) Shono, T.; Nagasawa, T.; Tsubouchi, A.; Takeda, T. Tetrahedron Lett.
2007, 48, 3521. (j) Thomas, E.; Kasatkin, A. N.; Whitby, R. J. Tetrahedron
Lett. 2006, 47, 9181.
(1) (a) Brandi, A.; Goti, A. Chem. Rev. 1998, 98, 589. (b) Brandi, A.;
Cicchi, S.; Cordero, F. M.; Goti, A. Chem. Rev. 2003, 103, 1213. (c)
Nakamura, I.; Yamamoto, Y. Adv. Synth. Catal. 2002, 344, 111.
€
(2) (a) Furstner, A.; Aıssa, C. J. Am. Chem. Soc. 2006, 128, 6306. (b)
Chowdhury, M. A.; Senboku, H.; Tokuda, M. Tetrahedron Lett. 2003, 44,
3329. (c) Liang, Y.; Jiao, L.; Wang, Y.; Chen, Y.; Ma, L.; Xu, J.; Zhang, S.;
Yu, Z.-X. Org. Lett. 2006, 8, 5877. (d) Taillier, C.; Lautens, M. Org. Lett.
2007, 9, 591. (e) Scott, M. E.; Lautens, M. Org. Lett. 2005, 7, 3045. (f) Nair,
V.; Suja, T. D.; Mohanan, K. Synthesis 2006, 2531.
(6) (a) Weatherhead-Kloster, R.; Corey, E. J. Org. Lett. 2006, 8, 171. (b)
Rubina, M.; Woodward, E. W.; Rubin, M. Org. Lett. 2007, 9, 5501. (c)
Masarwa, A.; Stanger, A.; Marek, I. Angew. Chem., Int. Ed. 2007, 46, 8039.
(d) Simaan, S.; Masarwa, A.; Bertus, P.; Marek, I. Angew. Chem., Int. Ed.
2006, 45, 3963. (e) Simaan, S.; Marek, I. Org. Lett. 2007, 9, 2569. (f) Simaan,
S.; Marek, I. Chem. Commun. 2009, 292.
(3) (a) Siriwardana, A. I.; Nakamura, I.; Yamamoto, Y. J. Org. Chem.
~
ꢀ
2004, 69, 3202. (b) Duran, J.; Gulı
´
as, M.; Castedo, L.; Mascarenas, J. L. Org.
(7) (a) Feist, F. Liebigs Ann. 1924, 436, 125. (b) Goss, F. R.; Ingold, C. K.;
Thrope, J. F. J. Chem. Soc., Trans. 1925, 127, 460.
Lett. 2005, 7, 5693. (c) Lautens, M.; Ren, Y.; Delanghe, P. J. Am. Chem. Soc.
1994, 116, 8821. (d) Lautens, M.; Ren, Y. J. Am. Chem. Soc. 1996, 118, 9597.
(e) Kamikawa, K.; Shimizu, Y.; Takemoto, S.; Matsuzaka, H. Org. Lett.
2006, 8, 4011. (f) de Meijere, A.; Kurahashi, T. Angew. Chem., Int. Ed. 2005,
44, 7881. (g) de Meijere, A.; Becker, H.; Stolle, A.; Kozhushkov, S. I.; Bes, M.
(8) (a) Kon, G. A. R.; Nanji, H. R. J. Chem. Soc. 1932, 2557. (b) Ettlinger,
M. G. J. Am. Chem. Soc. 1952, 74, 5805. (c) Gajewski, J. J. J. Am. Chem. Soc.
1968, 90, 7178. (d) Ullman, E. F.; Fanshawe, W. J. J. Am. Chem. Soc. 1961,
83, 2379. (e) Sanjiki, T.; Kato, H.; Ohta, M. Chem. Commun. 1968, 496. (f)
Crandall, J. K.; Paulson, D. R. J. Am. Chem. Soc. 1966, 88, 4302. (g) Dolbier,
W. R.; Lomas, J. D.; Tarrant, P. J. Am. Chem. Soc. 1968, 90, 3594.
(9) Shields, T. C.; Shoulders, B. A.; Krause, J. F.; Osborn, L. C.; Gardner,
P. D. J. Am. Chem. Soc. 1965, 87, 3026.
(10) (a) Creary, X. J. Org. Chem. 1978, 43, 1777. (b) Creary, X. J. Org.
Chem. 1980, 45, 280. (c) Creary, X.; Losch, A.; Sullivan, W. J. Org. Chem.
2007, 72, 7930. (d) Creary, X.; Mehrsheikh-Mohammadia, M. E. J. Org.
Chem. 1986, 51, 2664.
€
T.; Salaun, J.; Noltemeyer, M. Chem.;Eur. J. 2005, 11, 2471. (h) Molcha-
nov, A. P.; Diev, V. V.; Magull, J.; Vidovic, D.; Kozhushkov, S. I.; de
ꢀ
Meijere, A.; Kostikov, R. R. Eur. J. Org. Chem. 2005, 593. (i) Hu, B.; Zhu, J.;
Xing, S.; Fang, J.; Du, D.; Wang, Z. Chem.;Eur. J. 2009, 15, 324.
(4) (a) Zhou, H.; Huang, X.; Chen, W. Synlett. 2003, 13, 2080. (b) Shi, M.;
Shao, L.-X. Synlett. 2004, 5, 807. (c) Zhu, Z.-b.; Liu, L.-p.; Shao, L.-x.; Shi,
M. Synlett. 2007, 115. (d) Shi, M.; Jiang, M.; Liu, L.-p. Org. Biomol. Chem.
2007, 5, 438. (e) Shi, M.; Liu, L.-p.; Tang, J. Org. Lett. 2006, 8, 4043. (f) Chen,
W.-l.; Su, C.-l.; Huang, X. Synlett 2006, 9, 1446. (g) Huang, X.; Fu, W.-J.
Synthesis 2006, 6, 1016. (h) Huang, X.; Yang, Y. Org. Lett. 2007, 9, 1667. (i)
Yang, Y.; Huang, X. J. Org. Chem. 2008, 73, 4702. (j) Taniguchi, H.;
Ohmura, T.; Suginome, M. J. Am. Chem. Soc. 2009, 131, 11298. (k) Ohmura,
T.; Taniguchi, H.; Kondo, Y.; Suginome, M. J. Am. Chem. Soc. 2007, 129,
3518. (l) Hayashi, N.; Hirokawa, Y.; Shibata, I.; Yasuda, M.; Baba, A. J. Am.
Chem. Soc. 2008, 130, 2912.
(11) Nakamura, E.; Yamago, S.; Ejiri, S.; Dorigo, A. E.; Morokuma, K.
J. Am. Chem. Soc. 1991, 113, 3183.
(12) (a) Yang, Z.; Xie, X.; Fox, J. M. Angew. Chem., Int. Ed. 2006, 45,
3960. For related work on diastereoselective carbomagnesiation: (b) Liao,
L.; Fox, J. M. J. Am. Chem. Soc. 2002, 124, 14322. (c) Liu, X.; Fox, J. M. J.
Am. Chem. Soc. 2006, 128, 5600. (d) Yan, N.; Liu, X.; Fox, J. M. J. Org.
Chem. 2008, 73, 563.
DOI: 10.1021/jo1002938
r
Published on Web 05/12/2010
J. Org. Chem. 2010, 75, 3847–3850 3847
2010 American Chemical Society