the c rotation scan mode. The structure determination was performed by
direct methods using SHELXTL 5.01v and refinements with full-matrix
least squares on F2.
1 (a) M. A. Baldo, D. F. O’Brien, Y. You, A. Shoustikov, S. Sibley,
M. E. Thompson and S. R. Forrest, Nature, 1998, 395, 151;
(b) M. A. Baldo, S. Lamansky, P. E. Thompson and
S. R. Forrest, Appl. Phys. Lett., 1999, 75, 4; (c) C. Adachi,
M. A. Baldo, M. E. Thompson and S. R. Forrest, J. Appl. Phys.,
2001, 90, 5048.
2 (a) S. Lamansky, P. Djurovich, D. Murphy, F. Abdel-Razzaq,
H. E. Lee, C. Adachi, P. E. Burrows, S. R. Forrest and
M. E. Thompson, J. Am. Chem. Soc., 2001, 123, 4304;
(b) M. K. Nazeeruddin, R. Humphry-Baker, D. Berner, S. Rivier,
L. Zuppiroli and M. Graetzel, J. Am. Chem. Soc., 2003, 125, 8790;
(c) J. P. Duan, P. P. Sun and C. H. Cheng, Adv. Mater., 2003, 15,
224; (d) S. J. Yeh, M. F. Wu, C. T. Chen, Y. H. Song, Y. Chi,
M. H. Ho, S. F. Hsu and C. H. Chen, Adv. Mater., 2005, 17, 285;
(e) L. Q. Chen, H. You, C. L. Yang, D. G. Ma and J. G. Qin, Chem.
Commun., 2007, 1352; (f) H. J. Bolink, E. Coronado,
S. G. Santamaria, M. Sessolo, N. Evans, C. Klein, E. Baranoff,
K. Kalyanasundaram, M. Graetzel and M. K. Nazeeruddin, Chem.
Commun., 2007, 3276; (g) D. M. Kang, J. W. Kang, J. W. Park,
S. O. Jung, S. H. Lee, H. D. Park, Y. H. Kim, S. C. Shin, J. J. Kim
and S. K. Kwon, Adv. Mater., 2008, 20, 2003; (h) B. X. Mi,
P. F. Wang, Z. Q. Gao, C. S. Lee, S. T. Lee, H. L. Hong,
X. M. Chen, M. S. Wong, P. F. Xia, K. W. Cheah, C. H. Chen
and W. Huang, Adv. Mater., 2009, 21, 339.
3 (a) Y. Wang, N. Herron, V. V. Grushin, D. LeCloux and V. Petrov,
Appl. Phys. Lett., 2001, 79, 449; (b) H. Z. Xie, M. W. Liu,
O. Y. Wang, X. H. Zhang, C. S. Lee, L. S. Hung, S. T. Lee,
P. F. Teng, H. L. Kwong, Z. Hui and C. M. Che, Adv. Mater., 2001,
13, 1245; (c) R. J. Holmes, B. W. D’Andrade, S. R. Forrest, X. Ren,
J. Li and M. E. Thompson, Appl. Phys. Lett., 2003, 83, 3818;
(d) Y. H. Song, S. J. Yeh, C. T. Chen, Y. Chi, C. S. Liu,
J. K. Yu, Y. H. Hu, P. T. Chou, S. M. Peng and G. H. Lee, Adv.
Funct. Mater., 2004, 14, 1221; (e) Z. W. Liu, M. Guan, Z. Q. Bian,
D. B. Nie, Z. L. Gong, Z. B. Li and C. H. Huang, Adv. Funct.
Mater., 2006, 16, 1441; (f) B. Liang, L. Wang, Y. H. Xu, H. H. Shi
and Y. Cao, Adv. Funct. Mater., 2007, 17, 3580.
4 Recent reviews: (a) F. T. Edelmann, Adv. Organomet. Chem., 2008,
57, 184; (b) W.-X. Zhang and Z. Hou, Org. Biomol. Chem., 2008, 6,
1693.
5 M. Nonoyama, Bull. Chem. Soc. Jpn., 1974, 47, 767.
6 P. J. Hay, J. Phys. Chem. A, 2002, 106, 1634.
7 Improvements in the performance of the Ir(ppy)3-doped devices
were observed by modification of the device structures (e.g., employ-
ing a p-i-n structure or utilizing a more efficient exciton-block layer,
a higher-mobility electron-transport material or a host material with
superior charge mobility, etc.). For examples, see: (a) M. Ikai,
S. Tokito, Y. Sakamoto, T. Suzuki and Y. Taga, Appl. Phys. Lett.,
2001, 79, 156; (b) G. F. He, M. Pfeiffer, K. Leo, M. Hofmann,
J. Birnstock, R. Pudzich and J. Salbeck, Appl. Phys. Lett., 2004, 85,
3911; (c) S. J. Su, T. Chiba, T. Takeda and J. Kido, Adv. Mater.,
2008, 20, 2125; (d) Z. Q. Gao, M. M. Luo, X. H. Sun, H. L. Tam,
M. S. Wong, B. X. Mi, P. F. Xia, K. W. Cheah and C. H. Chen,
Adv. Mater., 2009, 21, 688.
Fig. 4 Power efficiency–current density curves of devices I–III.
efficiently transport charges without the need for a host.
There should be a stable charge carrier balance and efficient
confinement of the triplet excitons generated within the
emitting layer in the non-doped device.7a
In summary, we have demonstrated for the first time that
the use of a sterically demanding amidinate group as an
ancillary ligand for a bis-cyclometalated (C4N) phosphorescent
iridium species can lead to
a significant reduction in
self-quenching and a dramatic improvement in the electro-
luminescence properties of the complex, thus enabling the
successful fabrication of high efficiency, low driving-voltage
phosphorescent OLEDs in a wide range of doping concentrations
or even without the requirement of doping the emitter into a
host matrix. The insensitivity of EL properties to emitter-
doping concentration would make a sophisticated control of
the doping process unnecessary and thus lead to more efficient,
reproducible fabrication of high performance EL devices.
Because of the excellent performance and the ease of synthesis,
amidinate-ligated phosphorescent metal complexes should
have high potential in practical applications such as flat-panel
displays and organic lighting. Further studies on other phos-
phorescent cyclometalated (C4N) metal complexes bearing
amidinate and related ancillary ligands are in progress.
We are grateful to the Japan Society for the Promotion of
Science (JSPS) for a Postdoctoral Fellowship for Yu Liu. This
work was partly supported by the National Basic Research
Program of China (973 Program, 2009CB623600), the Natural
Science Foundation of China (50733002) and Jilin Provincial
Science and Technology Bureau of Jilin Province (20070107).
8 (a) X. H. Yang, F. Jaiser, B. Stiller, D. Neher, F. Galbrecht and
U. Scherf, Adv. Funct. Mater., 2006, 16, 2156; (b) X. H. Yang,
Notes and references
D. C. Muller, D. Neher and K. Meerholz, Adv. Mater., 2006, 18,
¨
948; (c) T. Tsuzuki and S. Tokito, Adv. Mater., 2007, 19, 276.
9 C. L. Ho, W. Y. Wong, G. J. Zhou, B. Yao, Z. Y. Xie and
L. X. Wang, Adv. Funct. Mater., 2007, 17, 2925.
z Single crystals suitable for X-ray structural analysis were obtained by
vacuum sublimation. Diffraction data were collected on a Rigaku R-Axis
Rapid diffractometer (Mo Ka radiation, graphite monochromator) in
ꢁc
This journal is The Royal Society of Chemistry 2009
Chem. Commun., 2009, 3699–3701 | 3701