C O M M U N I C A T I O N S
Table 3. Alkylation of C-H Bonds with Boronic Acidsa
process (eq 2). For the reaction with methylboroxine, we propose
that the methylboroxine coordinates with the pyridyl group first,
and the chelation of the oxygen atom in the methylboroxine with
Pd(OAc)2 directs the C-H cleavage (eq 4).15 The subsequent
intramolecular transmetalation is highly efficient, not requiring a
promoter (eq 4).
In summary, we have developed the first protocol for PdII-cata-
lyzed alkylations of sp2 and sp3 C-H bonds with either methyl-
boroxine or alkylboronic acids. Mechanistic investigations alluded
to an unusual methylboroxine-assisted C-H activation pathway.
We are currently exploring this new C-H activation pathway.
Acknowledgment. We thank Brandeis University and the U.S.
National Science Foundation (NSF CHE-0615716) for financial
support, and the Camille and Henry Dreyfus Foundation for a New
Faculty Award.
a 10 mol % of Pd(OAc)2, 1 equiv of Ag2O, 0.5 equiv of benzoquinone,
3 equiv of boronic acid, 100 °C, 6 h, tert-amyl alcohol, air.
To solve this problem, we turned to boronic acids. The reaction
of 1 with ethylboronic acids under the conditions described in Table
1 resulted in full recovery of the starting material. The stoichiometric
reaction of the dimeric palladacycle prepared from 1 with ethyl-
boronic acid gives 1b in less than 5% yield, indicating that
transmetalation is problematic. Screening a wide range of bases,
oxidants, and solvents established that the alkylation reaction
proceeds smoothly in the presence of Ag2O (or Ag2CO3) and
benzoquinone using t-amyl alcohol as the solvent (see Supporting
Information). Ag2O plays a dual role as an efficient promoter for
the transmetalation12 and co-oxidant13 with benzoquinone. Benzo-
quinone is crucial for the reductive elimination step.8 We were
pleased to find that this new protocol allowed the coupling of both
sp2 and sp3 C-H bonds with other boronic acids, including
cyclopropylboronic acid, thereby substantially expanding the scope
of C-H activation/C-C coupling reactions (Table 3). It should be
noted that the formation of dialkylated products was not observed
in entries 1-10. Interestingly, while Cu(OAc)2 is an efficient
oxidant with methylboroxine, the coupling reactions with boronic
acids were severely suppressed.14
Supporting Information Available: Experimental procedure and
characterization of all new compounds. This material is available free
References
(1) For reviews, see: (a) Kakiuchi, F.; Chatani, N. AdV. Synth. Catal. 2003,
345, 1077. (b) Handbook of C-H Transformations; Dyker, G., Ed.; Wiley-
VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2005; Vols. 1
and 2.
(2) (a) Murai, S.; Kakiuchi, F.; Sekine, S.; Tanaka, Y.; Kamatani, A.; Sonoda,
M.; Chatani, N. Nature 1993, 366, 529. (b) Oi, S.; Fukita, S.; Inoue, Y.
Chem. Commun. 1998, 2439. (c) Lenges, C. P.; Brookhart, M. J. Am.
Chem. Soc. 1999, 121, 6616. (d) Kakiuchi, F.; Kan, S.; Igi, K.; Chatani,
N.; Murai, S. J. Am. Chem. Soc. 2003, 125, 1698. (e) Lim, Y. G.; Ahn,
J.-A.; Jun, C.-H. Org. Lett. 2004, 6, 4687. (f) Thalji, R. K.; Ellman, J. A.;
Bergman, R. G. J. Am. Chem. Soc. 2004, 126, 7192. (g) Ackermann, L.;
Althammer, A.; Born, R. Angew. Chem., Int. Ed. 2006, 45, 2619.
(3) For Cu-catalyzed cross-dehydrogenative-coupling between sp3 and sp3
C-H bonds, see: Li, Z.; Li, C.-J. J. Am. Chem. Soc. 2005, 127, 3672.
(4) (a) Jia, C.; Kitamura, T.; Fujiwara, Y. Acc. Chem. Res. 2001, 34, 633. (b)
Boele, M. D. K.; van Strijdonck, G. P. F.; de Vries, A. H. M.; Kamer, P.
C. J.; de Vries, J. G.; van Leeuwen, P. W. N. M. J. Am. Chem. Soc.
2002, 124, 1586.
(5) (a) Kalyani, D.; Deprez, N. R.; Desai, L. V.; Sanford, M. S. J. Am. Chem.
Soc. 2005, 127, 7330. (b) Daugulis, O.; Zaitsev, V. G. Angew. Chem.,
Int. Ed. 2005, 44, 4046. (c) Shabashov, D.; Daugulis, O. Org. Lett. 2005,
7, 3657. (d) Zaitsev, V. G.; Shabashov, D.; Daugulis, O. J. Am. Chem.
Soc. 2005, 127, 13154. (e) Reddy, B. V.; Reddy, L. R.; Corey, E. J. Org.
Lett. 2006, 8, 3391.
Mechanistic observations were made with methylboroxine and
MeB(OH)2. First, the intramolecular kinetic isotope effects (kH/D
)
in the cyclopalladation of 23 are 7.3. Second, the dimeric palla-
dacycle 23a reacts with MeB(OH)2 under the conditions in Table
3 to give the methylated product (eq 2), but does not react with
methylboroxine under the conditions in Table 1. Third, the
intramolecular kinetic isotope effects (kH/D) in the methylation of
23 with MeB(OH)2 and methylboroxine are 6.7 and 3.0, respectively
(eq 3), with the former being approximately the same as the isotope
effects observed for the cyclopalladation step (within the error of
NMR measurement). Fourth, the intermolecular kinetic isotope
effects with MeB(OH)2 and methylboroxine are 4.0 and 3.5,
respectively, suggesting that C-H cleavage is the rate-limiting step
in both reactions (see Supporting Information).
(6) (a) Dyker, G. Angew. Chem., Int. Ed. Engl. 1994, 33, 103. (b) Catellani,
M.; Frignani, F.; Rangoni, A. Angew. Chem., Int. Ed. Engl. 1997, 36,
119. (c) Campo, M. A.; Huang, Q.; Yao, T.; Tian, Q.; Larock, R. C. J.
Am. Chem. Soc. 2003, 125, 11506. (d) Campeau, L. C.; Parisien, M.;
Leblanc, M.; Fagnou, K. J. Am. Chem. Soc. 2004, 126, 9186. (e) Bressy,
C.; Alberico, D.; Lautens, M. J. Am. Chem. Soc. 2005, 127, 13148. (f)
Dong, C.-G.; Hu, Q.-S. Angew. Chem., Int. Ed. 2006, 45, 2289.
(7) Barder, T. E.; Walker, S. D.; Martinelli, J. R.; Buchwald, S. L. J. Am.
Chem. Soc. 2005, 127, 4685.
(8) Chen, X.; Li, J.-J.; Hao, X.-S.; Goodhue, C. E.; Yu, J.-Q. J. Am. Chem.
Soc. 2006, 128, 78.
(9) Kirchhoff, J. H.; Netherton, M. R.; Hills, I. D.; Fu, G. C. J. Am. Chem.
Soc. 2002, 124, 13662.
(10) For a stoichiometric alkenylation of sp3 C-H bonds in a single substrate
with a vinylboronic acid, see: Dangel, B. D.; Godula, K.; Youn, S. W.;
Sezen, B.; Sames, D. J. Am. Chem. Soc. 2002, 124, 11856.
(11) (a) Lei, A.; Zhang, X. Org. Lett. 2002, 4, 2285. (b) Louie, J.; Hartwig, J.
F. Angew. Chem., Int. Ed. Engl. 1996, 35, 2359.
(12) For an early observation of rate acceleration of Suzuki coupling by Ag2O,
see: Uenishi, Y.; Beau, J.-M.; Armstrong, R. W.; Kishi, Y. J. Am. Chem.
Soc. 1987, 109, 4756.
(13) Ag2O was also shown to be able to replace Cu(OAc)2 as an oxidant under
the conditions indicated in Table 1.
(14) For transmetalation between Cu(OAc)2 and boronic acids, see: Evans,
D. A.; Katz, J. L.; West, T. R. Tetrahedron Lett. 1998, 39, 2937.
(15) For coordination of PdII or CuII with oxygen atom in a B-O bond, see:
(a) Sumimoto, M.; Iwane, N.; Takahama, T.; Sakaki, S. J. Am. Chem.
Soc. 2004, 126, 10457. (b) McKinley, N. F.; O’Shea, D. F. J. Org. Chem.
2004, 69, 5087.
On the basis of these observations, the coupling reaction with
boronic acids most likely involves a conventional cyclopalladation
JA0646747
9
J. AM. CHEM. SOC. VOL. 128, NO. 39, 2006 12635