Cyclodextrins to Encapsulate Radical Adducts
J. Phys. Chem. A, Vol. 114, No. 21, 2010 6225
(6) Kotake, Y.; Janzen, E. G. J. Am. Chem. Soc. 1989, 111, 7319–
TABLE 3: Association Constants, Ka, of DTBN in ꢀ-CD in
the Absence (Middle Column) and in the Presence (Last
Column) of Acetic Acid
7323.
(7) Kotake, Y.; Janzen, E. G. J. Am. Chem. Soc. 1992, 114, 2872–
2874.
(8) Franchi, P.; Pedulli, G.-F.; Lucarini, M. J. Phys. Chem. B 2008,
112, 8706–8714.
(9) Ionita, G.; Florent, M.; Goldfarb, D.; Chechik, V. J. Phys. Chem.
B 2009, 113, 5781–5787.
(10) Eastman, M. P.; Brainard, J. R.; Stewart, D.; Anderson, G.; Lloyd,
W. D. Macromolecules 1989, 22, 3888–3892.
(11) Bardelang, D.; Clement, J.-L.; Finet, J.-P.; Karoui, H.; Tordo, P.
J. Phys. Chem. B 2004, 108, 8054–8061.
(12) (a) Karoui, H.; Rockenbauer, A.; Pietri, S.; Tordo, P. Chem.
Commun. 2002, 3030–3031. (b) Bardelang, D.; Rockenbauer, A.; Karoui,
H.; Finet, J.-P.; Tordo, P. J. Phys. Chem. B 2005, 109, 10521–10530.
(13) Cle´ment, J.-L.; Tordo, P. Advances in Spin Trapping. In Electron
Paramagnetic Resonance; Gilbert, B. C., Davies, M. J., Murphy, D. M.,
Eds.; A Specialist Periodical Report; Royal Society of Chemistry: Cam-
bridge, 2007; Vol. 20, pp 29-49 and references therein.
(14) (a) Luo, L. B.; Han, D. Y.; Wu, Y.; Song, X. Y.; Chen, H. L.
J. Chem. Soc., Perkin Trans. 1998, 2, 1709–1714. (b) Song, X.; Chen, Y.;
Chen, H. New J. Chem. 2001, 25, 985–988.
(15) Han, Y.; Tuccio, B.; Lauricella, R.; Villamena, F. A. J. Org. Chem.
2008, 73, 7108–7117.
(16) Kadirov, M. K.; Bosnjakovic, A.; Schlick, S. J. Phys. Chem. B
2005, 109, 7664–7670.
Ka/M-1
[ꢀ-CD] × 104/M
DTBN/ꢀ-CD
DTBN/AA/ꢀ-CD
7
8
561
612
636
619
583
4624
4493
2812
2131
1886
1571
2606
10
20
30
40
50
60
70
adduct drags the adduct inside the host cavity. Calculation of
the association constant Ka indicated the competition between
DTBN and the adduct for inclusion in the host cavity: For
[ꢀ-CD] ≈ 9 × 10-4 M the Ka for DTBN increases dramatically,
while the Ka for the adduct plateaus and starts to decrease. These
results reinforce the idea that the two nitroxide radicals are
competitors for inclusion in the host.
(17) Bosnjakovic, A.; Schlick, S. J. Phys. Chem. B 2006, 111, 10720–
10728.
In a given system containing MNP as spin trap, the two
nitroxide radicals (adduct and DTBN) have the same type of
interaction with the host: at the rim in acetic acid and inside
the host caVity in CF2HCOOH.
Experiments with DTBN in the absence of the spin trap and
of adducts illuminated the effect of the pH and of the local
polarity on the hfs and indicated that the presence of acetic acid
encourages rim complexation.
(18) Lund, A.; Macomber, L.; Danilczuk, M.; Stevens, J.; Schlick, S. J.
Phys. Chem. B 2007, 111, 9484–9491.
(19) Danilczuk, M.; Coms, F. D.; Schlick, S. Fuel Cells 2008, 8 (6),
436–452.
(20) Bednarek, J.; Schlick, S. J. Phys. Chem. 1991, 95, 9940.
(21) Janzen, E. G. Acc. Chem. Res. 1971, 4, 31–40.
(22) Lagercrantz, C. J. Phys. Chem. 1971, 75, 3466–3475.
(24) Danilczuk, M.; Schlick, S.; Coms, F. D. J. Phys. Chem. B 2009,
113, 8031–8042.
(25) Danilczuk, M.; Coms, F. D.; Schlick, S. Macromolecules 2009,
42, 8943–8949.
Acknowledgment. This research was supported by grants
(26) Madden, K. P.; Taniguchi, H. J. Am. Chem. Soc. 1991, 113, 5541.
(27) Gaffney, B. J. In Spin Labeling, Theory and Applications; Berliner,
L. J. Ed.; Academic Press: New York, 1976; Chapter 5, pp 1830-238.
(28) Stella, V. J.; Rao, V. M.; Zannou, E. A.; Zia, V. AdV. Drug DeliVery
ReV. 1999, 36, 3–16.
from the Polymers Program of the National Science Foundation.
Supporting Information Available: Experimental and
simulated ESR spectra of the MNP/CH2COOH adduct and of
DTBN detected at 300 K and pH 5 in the presence of methylated
ꢀ-CD (Me ꢀ-CD) as the host. This material is available free of
research/resources/software/tools/index.cfm.
(30) Kotake, Y.; Janzen, E. G. J. Am. Chem. Soc. 1991, 113, 9503–
9506.
(31) Eastman, M. P.; Freiha, B.; Hsu, C. C.; Lum, K. C.; Chang, C. A.
J. Phys. Chem. 1987, 91, 1953–195.
(32) Vujosevic, D.; Dilger, H.; McKenzie, I.; Martyniak, A.; Scheuer-
mann, R.; Roduner, E. J. Phys. Chem. B 2007, 111, 199–208.
(33) We are grateful to a reviewer for this observation.
(34) Kotake, Y.; Janzen, E. G. J. Am. Chem. Soc. 1989, 111, 5138–
5140.
References and Notes
(1) Szejtli, J. Chem. ReV. 1998, 98, 1743–1753.
(2) Hedges, A. R. Chem. ReV. 1998, 98, 2035–2044.
(3) (a) Spulber, M.; Pinteala, M.; Fifere, A.; Moldoveanu, C.; Man-
galagiu, I.; Harabagiu, V.; Simionescu, B. C. J. Inclusion Phenom.
Macrocyclic Chem. 2008, 62, 135–142. (b) Miron, L.; Mares, M.; Nastasa,
V.; Spulber, M.; Pinteala, M.; Fifere, A.; Harabagiu, V.; Simionescu, B. C.
J. Inclusion Phenom. Macrocyclic Chem 2009, 63, 159–162, and references
therein.
(4) Atherton, N. M.; Strach, S. J. J. Chem. Soc., Faraday Trans. 2
1974, 357–360.
(5) Martinie, J.; Michon, J.; Rassat, A. J. Am. Chem. Soc. 1975, 97,
1818–1823.
(35) Song, L. X.; Bai, L.; Xu, X. M.; He, J.; Pan, S. Z. Coord. Chem.
ReV. 2009, 253, 1276–1284.
(36) Kim, H.-S.; Chung, T. D.; Kim, H. J. Electroanal. Chem. 2001,
498, 209–215.
(37) Ye, Y. K.; Stringham, R. W. J. Chromatogr., Sect. A 2001, 927,
47–52.
JP100777U