5326
R. Chawla et al. / Tetrahedron Letters 53 (2012) 5323–5326
Chem. Sci. 2012, 3, 384; (d) Chen, Y.; Zhong, C.; Peterson, J. L.; Akhmedov, N. G.;
Shi, X. Org. Lett. 2009, 11, 2333.
confirms the trans-stereochemistry at all the vicinal carbons of the
piperidine ring in products 5 as shown in Scheme 2.
9. (a) Dahmen, S.; Brase, S. J. Am. Chem. Soc. 2002, 124, 5940; (b) Mennen, S. M.;
Gipson, J. D.; Kun, Y. R.; Muller, J. J. Am. Chem. Soc. 2005, 127, 1654; (c) Van
Leusen, A. M.; Wildeman, J.; Oldenziel, O. H. J. Org. Chem. 1977, 42, 1153; (d)
Sisko, J.; Mellinger, M.; Sheldrake, P. W.; Baine, N. H. Tetrahedron Lett. 1996, 37,
8113.
10. (a) Zakrewski, J.; Krawczyk, M. Bioorg. Med. Chem. Lett. 2011, 21, 514; (b)
Sekhar, A. C.; Kumar, A. R.; Sathaiah, G.; Paul, V. L.; Sridhar, M.; Rao, P. S.
Tetrahedron Lett. 2009, 50, 7099; (c) Das, B.; Krishnaiah, M.; Balasubramanyam,
P.; Veeranjaaneyulu, B.; Kumar, D. N. Tetrahedron Lett. 2008, 49, 2225; (d)
Jayabarthi, J.; Manimekalai, A.; Vani, T. C.; Padmavathy, M. Eur. J. Med. Chem.
2007, 42, 593.
In summary, we have developed the first one-pot chiral amine-
triggered asymmetric synthesis of highly substituted N-formylpi-
peridines via a [2+2+2]-annulation of an aldehyde, a nitroalkene,
and an N-(aryl(tosyl)methyl)formamide. The merit of this method
is highlighted by its efficiency to install five contiguous chiral
centers into the piperidine structure. No by-product formation,
operational simplicity, ambient temperature, and high stereoselec-
tivity are the salient features of the present protocol, which would
encourage chemical and pharmaceutical applications of N-formylpi
peridines.
11. (a) Zakrzewski, J.; Krawczyk, M. Heteroat. Chem. 2006, 17, 393; (b) Zakrzewski,
J.; Krawczyk, M. Heteroat. Chem. 2008, 19, 549.
12. (a) Kizuka, H.; Elmaleh, D. R. Nucl. Med. Biol. 1993, 20, 239; (b) Kraus, N. A.
Synthesis 1973, 361.
13. Labas, R.; Gilbert, G.; Nicole, O.; Dhilly, M.; Abbas, A.; Tirel, O.; Buisson, A.;
Henry, J.; Barré, L.; Debruyne, D.; Sobrio, F. Eur. J. Med. Chem. 2011, 46, 2295.
14. General procedure for the synthesis of N-formylpiperidines 5: Diphenylprolinol
trimethylsilyl ether 4a (0.2 mmol) was added to a solution of nitroalkene 2
(1 mmol) and aldehyde 1 (1.2 mmol) in CH2Cl2 (2 mL) at 23 °C under nitrogen
atmosphere and the mixture was stirred for 6–10 h at rt. Then, N-
(aryl(tosyl)methyl)formamide 3 (1.2 mmol) and triethylamine (2 mmol) in
CH2Cl2 (4 mL) were added to the reaction mixture at rt under nitrogen
atmosphere. The resulting mixture was stirred for 15–20 h at rt, then,
quenched with saturated aqueous citric acid, and extracted three times with
ethyl acetate. The combined organic layer was washed with water followed by
saturated aqueous sodium chloride, dried over sodium sulfate, and
concentrated under reduced pressure. The residue was purified by silica gel
column chromatography (EtOAc-hexane; 1:9 as eluent) to afford an
analytically pure sample of N-formylpiperidines 5. Characterization data of
representative compounds 5. Compound 5a: Yellow liquid, yield 91%. IR (KBr)
Acknowledgments
We sincerely thank the DST, Govt. of India, for financial support
(DST File No. SR/S1/OC-22/2010) and the SAIF, Punjab University,
Chandigarh, for providing microanalyses and spectra.
References and notes
1. (a) Asymmetric Organocatalysis; Berkessel, A., Groger, H., Eds.; Wiley-VCH:
Weinheim, Germany, 2005; (b) Enantioselective Organocatalysis; Dalko, P. I., Ed.;
Wiley-VCH: Weinheim, Germany, 2007; (c) Melchiorre, P.; Margio, M.;
Armando, A.; Bartoli, G. Angew. Chem., Int. Ed. 2008, 47, 6138; (d) Marcelli, T.;
Hiemstra, H. Synthesis 2010, 1229; (e) Hayashi, Y.; Gotoh, H.; Hayashi, T.; Shoji,
M. Angew. Chem., Int. Ed. 2005, 44, 4212.
2. (a) Enders, D.; Grondal, C.; Hüttl, M. R. M. Angew. Chem. Int. Ed. 2007, 46, 1570;
(b) Bui, T.; Barbas, C. F., III Tetrahedron Lett. 2000, 41, 6951; (c) Halland, N.;
Aburel, P. S.; Jørgensen, K. A. Angew. Chem., Int. Ed. 2004, 43, 1272; (d) Rueping,
M.; Antonchick, A. P.; Theissmann, T. Angew. Chem., Int. Ed. 2006, 45, 3683; (e)
Huang, Y.; Walji, A. M.; Larsen, C. H.; MacMillan, D. W. C. J. Am. Chem. Soc. 2005,
127, 15051; (f) Marigo, M.; Schulte, T.; Franzén, J.; Jørgensen, K. A. J. Am. Chem.
Soc. 2005, 127, 15710; (g) Enders, D.; Hüttl, M. R. M.; Grondal, C.; Raabe, G.
Nature 2006, 441, 861.
3. (a) Singh, A. K.; Chawla, R.; Rai, A.; Yadav, L. D. S. Chem. Commun. 2012, 48,
3766; (b) Rai, A.; Singh, A. K.; Singh, S.; Yadav, L. D. S. Synlett 2011, 335; (c) Rai,
A.; Singh, A. K.; Singh, P.; Yadav, L. D. S. Tetrahedron Lett. 2011, 52, 1354.
4. Watson, P. S.; Jiang, B. Org. Lett. 2000, 2, 3679.
5. (a) Han, B.; Li, J.-L.; Ma, C.; Zhang, S.-J.; Chen, Y.-C. Angew. Chem. Int. Ed. 2008,
47, 9971; (b) Han, B.; He, Z.-Q.; Li, J.-L.; Li, R.; Jiang, K.; Liu, T.-Y.; Chen, Y.-C.
Angew. Chem., Int. Ed. 2009, 48, 5474; (c) Hayashi, Y.; Gotoh, H.; Masui, R.;
Ishikawa, H. Angew. Chem. 2008, 120, 4076. Angew. Chem., Int. Ed. 2008, 47,
4012.
m
max 3444, 2963, 1660, 1554, 1450, 1330, 1154, 1021, 924, 813, 704, 676 cmÀ1
.
1H NMR (400 MHz; DMSO-d6) d: 1.05 (d, J = 6.9 Hz, 3H), 1.68 (bs, exch. D2O,
1H), 2.42–2.51 (m, 1H), 2.82 (dd, J = 11.8, 8.5 Hz, 1H), 3.43 (t, J = 11.8 Hz, 1H),
5.08 (d, J = 10.4 Hz, 1H), 5.46 (dd, J = 10.8, 2.5 Hz, 1H), 6.99–7.46 (m, 10 H), 8.81
(s, CHO, 1H). 13C NMR (100 Hz, DMSO-d6) d: 8.9, 27.9, 32.6, 40.7, 72.9, 85.5,
125.4, 126.3, 127.2, 128.1, 129.2, 130.5, 139.6, 141.7, 163.2 ppm. EIMS m/z 340
(M+). Anal. Calcd for C19H20N2O4: C, 67.05; H, 5.92; N, 8.23. Found: C, 66.73; H,
6.17; N, 8.57. Compound 5c: Yellow liquid, yield 88%. IR (KBr)
m
max 3447, 2961,
1652, 1548, 1453, 1329, 1156, 1021, 921, 817, 707, 672, 541 cmÀ1
.
1H NMR
(400 MHz; DMSO-d6) d: 1.12 (d, J = 6.6 Hz, 3H), 1.87 (bs, exch. D2O, 1H), 2.48–
2.59 (m, 1H), 2.89 (dd, J = 11.6, 8.9 Hz, 1H), 3.42 (t, J = 11.6 Hz, 1H), 5.12 (d,
J = 10.7 Hz, 1H), 5.44 (dd, J = 10.9, 2.8 Hz, 1H), 7.31 (d, J = 8.0 Hz, 2H), 7.40–7.68
(m, 5 H), 7.74 (d, J = 8.2 Hz, 2H), 8.79 (s, CHO, 1H). 13C NMR (100 MHz, DMSO-
d6) d: 8.8, 27.7, 32.8, 40.4, 72.3, 85.5, 120.2, 125.4, 127.5, 128.8, 130.6, 131.5,
138.2, 140.7, 162.0 ppm. EIMS m/z 418, 420 (M+, M++2). Anal. Calcd for
C
19H19BrN2O4: C, 54.43; H, 4.57; N, 6.68. Found: C, 54.78; H, 4.90; N, 6.37.
Compound 5f: Yellow liquid, yield 80%. IR (KBr) mmax 3441, 2968, 1657, 1551,
1454, 1332, 1152, 1020, 925, 810, 709, 679 cmÀ1 1H NMR (400 MHz; DMSO-
.
6. Nara, S.; Tanaka, R.; Eishima, J.; Hara, M.; Takahashi, Y.; Otaki, S.; Foglesong, R.
J.; Hughes, P. F.; Turkington, S.; Kanda, Y. J. Med. Chem. 2003, 46, 2467.
7. (a) Urushima, T.; Sakamoto, D.; Ishikawa, H.; Hayashi, Y. Org. Lett. 2010, 12,
4588; (b) Wang, Y.; Yu, D.-F.; Liu, Y.-Z.; Wei, H.; Luo, Y.-C.; Dixon, D. J.; Xu, P.-F.
Chem. Eur. J. 2010, 16, 3922.
8. (a) Ishikawa, H.; Saweno, S.; Yasui, Y.; Shibata, Y.; Hayashi, Y. Angew. Chem., Int.
Ed. 2011, 50, 3774; (b) Davies, S. G.; Roberts, P. M.; Smith, A. D. Org. Biomol.
Chem. 2007, 5, 1405; (c) Rajkumar, S.; Shankland, K.; Brown, G. D.; Cobb, A. J. A.
d6) d: 0.98 (d, J = 7.1 Hz, 3H), 1.72 (bs, exch. D2O, 1H), 2.36–2.43 (m, 1H), 2.45
(s, 3H), 2.91 (dd, J = 11.9, 8.3 Hz, 1H), 3.37 (t, J = 11.9 Hz, 1H), 5.03 (d,
J = 10.5 Hz, 1H), 5.40 (dd, J = 10.7, 2.6 Hz, 1H), 7.10–7.42 (m, 5 H), 8.01–8.04 (m,
2H), 8.10–8.15 (m, 2H), 8.72 (s, CHO, 1H). 13C NMR (100 MHz, DMSO-d6) d: 7.6,
25.1, 28.8, 30.6, 41.1, 71.9, 85.7, 126.0, 127.2, 128.1, 129.2, 130.3, 134.7, 137.8,
141.1, 162.5 ppm. EIMS m/z 354 (M+). Anal. Calcd for C20H22N2O4: C, 67.78; H,
6.26; N, 7.90. Found: C, 68.03; H, 5.96; N, 8.17.