ACS Medicinal Chemistry Letters
Letter
(7) Steffens, M.; Zentner, J.; Honegger, J.; Feuerstein, T. J. Binding
affinity and agonist activity of putative endogenous cannabinoids at the
human neocortical CB1 receptor. Biochem. Pharmacol. 2005, 69, 169−
178.
(8) Cravatt, B. F.; Giang, D. K.; Mayfield, S. P.; Boger, D. L.
Molecular characterization of an enzyme that degrades neuro-
modulatory fatty-acid amides. Nature (London, U.K.) 1996, 384, 83−
87.
(9) Willoughby, K. A.; Moore, S. F.; Martin, B. R.; Ellis, E. F. The
biodistribution and metabolism of anandamide in mice. J. Pharmacol.
Exp. Ther. 1997, 282, 243−247.
(10) Cravatt, B. F.; Demarest, K.; Patricelli, M. P.; Bracey, M. H.;
Giang, D. K.; Martin, B. R.; Lichtman, A. H. Supersensitivity to
anandamide and enhanced endogenous cannabinoid signaling in mice
lacking fatty acid amide hydrolase. Proc. Natl. Acad. Sci. U.S.A. 2001,
98, 9371−9376.
(11) Patricelli, M. P.; Cravatt, B. F. Fatty acid amide hydrolase
competitively degrades bioactive amides and esters through a
nonconventional catalytic mechanism. Biochemistry 1999, 38,
14125−14130.
(12) Boger, D. L.; Fecik, R. A.; Patterson, J. E.; Miyauchi, H.;
Patricelli, M. P.; Cravatt, B. F. Fatty acid amide hydrolase substrate
specificity. Bioorg. Med. Chem. Lett. 2000, 10, 2613−2616.
(13) Lambert, D. M.; Vandevoorde, S.; Jonsson, K. O.; Fowler, C. J.
The palmitoylethanolamide family: A new class of anti-inflammitory
agents. Curr. Med. Chem. 2002, 9, 663−674.
(14) Lo Verme, J.; Fu, J.; Astarita, G.; La Rana, G.; Russo, R.;
Calignano, A.; Piomelli, D. The nuclear receptor peroxisome
proliferator-activated receptor-alpha mediates the anti-inflammitory
actions of palmitoylethanolamide. Mol. Pharmacol. 2005, 67, 15−19.
(15) Thabuis, C.; Destaillats, F.; Tissot-Favre, D.; Martin, J.-C.
Oleoyl-Ethanolamide (OEA): A bioactive lipid derived from oleic acid
and phosphatidylethanol-amine. Lipid Technol. 2007, 19, 225.
(16) Boger, D. L.; Henriksen, S. J.; Cravatt, B. F. Oleamide: An
endogenous sleep-inducing lipid and prototypical member of a new
class of biological signaling molecules. Curr. Pharm. Des. 1998, 4, 303−
314.
OEA, and 150−175% PEA; Figure 7 in the Supporting
Information). The degree of AEA elevation was greater than
that observed in the rat but less than in the dog. The peak levels
of all three FAAs were reached 4 h after iv dosing. As PF-
04457845 raised plasma levels of the FAAs in human subjects,
it may be reasonable to postulate that dual inhibition of FAAH
and FAAH-2 is not necessary to achieve elevated levels of
FAAH's primary substrates in primates. Because it is not known
what FAA levels could be achieved if both FAAH and FAAH-2
were inhibited,10,46 we cannot rigorously conclude that
inhibition of FAAH-2 would have no impact on the efficacy
of a FAAH inhibitor. However, it is reassuring that FAA levels
can be influenced by the selective inhibition of FAAH.
In conclusion, we have described a series of substituted
phenyl and heteroaryl urea FAAH inhibitors. The highly potent
FAAH inhibitor JNJ-40355003 was found to have good physical
and PK properties and elevated the plasma and brain
concentrations of AEA, PEA, and OEA in rats after oral
dosing. Similarly, plasma levels of these three lipids were found
to be elevated in dogs and monkeys orally dosed with JNJ-
40355003. The elevation of FAAs in the monkey strongly
suggests that FAAH-2 is not contributing greatly to the
breakdown of fatty acid ethanolamides in the plasma; thus, its
inhibition is unlikely to be required for there to be a
pharmacological benefit from blockade of the FAAH enzyme
in humans. Additional studies involving urea inhibitors of
FAAH will be reported in due course.
ASSOCIATED CONTENT
■
S
* Supporting Information
Detailed experimental procedures, annotated 1H NMR, and MS
data for the described compounds as well as graphical
representations of in vivo data for JNJ-40355003 can be
found in the supporting information. This material is available
(17) Wei, B. Q.; Mikkelsen, T. S.; McKinney, M. K.; Lander, E. S.;
Cravatt, B. F. A second fatty acid amide hydrolase with variable
distribution among placental mammals. J. Biol. Chem. 2006, 281,
36569−36578.
(18) Boger, D. L.; Miyauchi, H.; Du, W.; Hardouin, C.; Fecik, R. A.;
Cheng, H.; Hwang, I.; Hedrick, M. P.; Leung, D.; Acevedo, O.;
Guimaraes, C. R.; Jorgensen, W. L.; Cravatt, B. F. Discovery of a
potent, selective, and efficacious class of reversible α-ketoheterocycle
inhibitors of fatty acid amide hydrolase effective as analgesics. J. Med.
Chem. 2005, 48, 1849−1856.
AUTHOR INFORMATION
■
Corresponding Author
Notes
The authors declare no competing financial interest.
(19) Romero, F. A.; Du, W.; Hwang, I.; Rayl, T. J.; Kimball, F. S.;
Leung, D.; Hoover, H. S.; Apodaca, R. L.; Breitenbucher, J. G.;
Cravatt, B. F.; Boger, D. L. Potent and selective α-ketoheterocycle
inhibitors of the anandamide and oleamide catabolizing enzyme, fatty
acid amide hydrolase. J. Med. Chem. 2007, 50, 1058−1068.
(20) Fegley, D.; Gaetani, S.; Duranti, A.; Tontini, A.; Mor, M.;
Tarzia, G.; Piomelli, D. Characterization of the fatty acid amide
hydrolase inhibitor cyclohexyl carbamic acid 3′-carbamoyl-biphenyl-3-
yl ester (URB597): effects on anandamide and oleoylethanolamide
deactivation. J. Pharmacol. Exp. Ther. 2005, 313, 352−358.
(21) Abouabdellah, A.; Burnier, P.; Hoornaert, C.; Jeunesse, J.;
Puech, F. Piperidinyl- and piperazinyl-alkylcarbamates, their use as
fatty acid amido hydrolase (FAAH) inhibitors for treating FAAH-
related pathologies. PCT Int. Appl. 2004099176, 2004.
REFERENCES
■
(1) Calixto, J. B.; Beirith, A.; Ferreira, J.; Santos, A. R.; Filho, V. C.;
Yunes, R. A. Naturally occurring antinociceptive substances from
plants. Phytother. Res. 2000, 14, 401−418.
(2) Matsuda, L. A.; Lolait, S. J.; Brownstein, M. J.; Young, A. C.;
Bonner, T. I. Structure of a cannabinoid receptor and functional
expression of the cloned cDNA. Nature (London, U.K.) 1990, 346,
561−564.
(3) Munro, S.; Thomas, K. L.; Abu-Shaar, M. Molecular character-
ization of a peripheral receptor for cannabinoids. Nature (London,
U.K.) 1993, 365, 61−65.
(4) Grotenhermen, F. The toxicology of cannabis and cannabis
prohibition. Chem. Biodiversity 2007, 4, 1744−1769.
(22) Ahn, K.; Johnson, D. S.; Fitzgerald, L. R.; Liimatta, M.; Arendse,
A.; Stevenson, T.; Lund, E.. T.; Nugent, R. A.; Nomanbhoy, T. K.;
Alexander, J. P.; Cravatt, B. F. Novel mechanistic class of fatty acid
amide hydrolase inhibitors with remarkable selectivity. Biochemistry
2007, 46, 13019−13030.
(23) Johnson, D. S.; Ahn, K.; Kesten, S.; Lazerwith, S. E.; Song, Y.;
Morris, M.; Fay, L.; Gregory, T.; Stiff, C.; Dunbar, J. B.; Liimatta, M.;
Beidler, D.; Smith, S.; Nomanbhoy, T. K.; Cravatt, B. F.
(5) Devane, W. A.; Hanus, L.; Breuer, A.; Pertwee, R. G.; Stevenson,
L. A.; Griffin, G.; Gibson, D.; Mandelbaum, A.; Etinger, A.;
Mechoulam, R. Isolation and structure of a brain constituent that
bind to the cannabinoid receptor. Science 1992, 258, 1946−1949.
(6) Lichtman, A. H.; Hawkins, E. G.; Griffin, G.; Cravatt, B. F.
Pharmacological Activity of Fatty Acid Amides Is Regulated, but Not
Mediated, by Fatty Acid Amide Hydrolase in Vivo. JPET 2002, 302,
73−79.
826
dx.doi.org/10.1021/ml300186g | ACS Med. Chem. Lett. 2012, 3, 823−827