5716 Inorganic Chemistry, Vol. 49, No. 12, 2010
Zhang et al.
chemistry. Considerable recent interest has focused on the
development of guanidinate anions as sterically and electro-
nically flexible ligands for the design of new organometallic
complexes.5 These compounds have been shown as excep-
tional catalysts in the transformation of organic functional-
ities and the polymerization of a variety of polar monomers
and olefins.6-8 Moreover, guanidinate complexes bear an
application potential as photoelectric materials9 and precur-
sors for ALD and MOCVD processes.10 Despite significant
recent advances in this area, the synthesis of thiolate com-
plexes containing the guanidinate coligand has no precedent.5
Furthermore, the basic chemistry of organolanthanides
containing thiolate and disulfide ligands remains relatively
little explored,11,12 in comparison to the impressive develop-
ment of their transition-metal counterparts. A major reason
may be attributed to the difficulties encountered in their
synthesis due to the intrinsic low affinity of these metals to the
soft sulfur-containing ligands. Recently, we have reported
that sulfur insertion into the Ln-C bond is a feasible route to
formation of the Ln-S bond.13 As part of a continuing effort
in our laboratory toward the development of new methods
for the synthesis of organolanthanide thiolate and disulfide
complexes, we became interested in comparing the reactivity
of complexes with alternative spectator ligand systems with
that of bis(cyclopentadienyl) and related systems and further
revealing the versatility of the sulfur insertion into Ln-C
(Ln=lanthanide metal or yttrium) bonds.
In this paper, we describe the synthesis of bis(guanidi-
nate)lanthanide(III) alkyl and aryl complexes and their reac-
tivity behavior toward elemental sulfur, which provide a
simple and efficient method for the preparation of unreported
bis(guanidinate)lanthanide thiolate and disulfide complexes
that would be difficult to prepare by classical metathetical
reactions.
Experimental Section
General Procedure. All operations involving air- and moist-
ure-sensitive compounds were carried out under an inert atmo-
sphere of purified nitrogen using standard Schlenk techniques.
Tetrahydrofuran (THF), toluene, and n-hexane were refluxed
and distilled over sodium benzophenone ketyl under nitrogen
immediately prior to use. [(Me3Si)2NC(NCy)2]2Ln(μ-Cl)2Li-
(THF)214 and BnK15 were prepared according to the literature
procedures. nBuLi, tBuLi, and PhLi were purchased from
Aldrich and used as received without further purification.
Elemental sulfur was treated under vacuum for 30 min imme-
diately prior to use. Elemental analysis for C, H, and N was
carried out on a Rapid CHN-O analyzer. IR spectra were ob-
tained on a Nicolet FT-IR 360 spectrometer with samples pre-
(5) (a) Edelmann, F. T. Chem. Soc. Rev. 2009, 38, 2253. (b) Bailey, P. J.;
Pace, S. Coord. Chem. Rev. 2001, 214, 91. (c) Edelmann, F. T. Adv. Organomet.
Chem. 2008, 57, 183.
(6) (a) Qian, C.; Zhang, X.; Zhang, Y.; Shen, Q. J. Organomet. Chem.
2010, 695, 747. (b) Qian, C.; Zhang, X.; Li, J.; Xu, F.; Zhang, Y.; Shen, Q.
Organometallics 2009, 28, 3856. (c) Gott, A. L.; Clarkson, G. J.; Deeth, R. J.;
Hammond, M. L.; Morton, C.; Scott, P. Dalton Trans. 2008, 2983. (d) Ge, S.;
Meetsma, A.; Hessen, B. Organometallics 2008, 27, 3131. (e) Ong, T.-G.; Yap,
G. P. A.; Richeson, D. S. Chem. Commun. 2003, 2612. (f) Ong, T.-G.; Yap,
G. P. A.; Richeson, D. S. Organometallics 2002, 21, 2839. (g) Holland, A. W.;
Bergman, R. G. J. Am. Chem. Soc. 2002, 124, 9010.
1
pared as Nujol mulls. H NMR data were obtained on a Jeol
ECA-400 NMR spectrometer. The UV-visible spectra were
recorded on a Shimadzu UV-2550 spectrometer.
(7) (a) Ajellal, N.; Lyubov, D. M.; Sinenkov, M. A.; Fukin, G. K.;
Cherkasov, A. V.; Thomas, C. M.; Carpentier, J.-F.; Trifonov, A. A.
Chem.;Eur. J. 2008, 14, 5440. (b) Skvortsov, G. G.; Yakovenko, M. V.; Fukin,
G. K.; Cherkasov, A. V.; Trifonov, A. A. Russ. Chem. Bull. 2007, 56, 1742. (c)
Skvortsov, G. G.; Yakovenko, M. V.; Fukin, G. K.; Baranov, E. V.; Kurskii, Y. A.;
Trifonov, A. A. Russ. Chem. Bull. 2007, 56, 456. (d) Skvortsov, G. G.;
Yakovenko, M. V.; Castro, P. M.; Fukin, G. K.; Cherkasov, A. V.; Carpentier,
J.-F.; Trifonov, A. A. Eur. J. Inorg. Chem. 2007, 3260. (e) Yuan, F.; Zhu, Y.;
Xiong, L. J. Organomet. Chem. 2006, 691, 3377. (f) Zhou, L.; Sun, H.; Chen, J.;
Yao, Y.; Shen, Q. J. Polym. Sci., Part A: Polym. Chem. 2005, 43, 1778. (g)
Zhou, L.; Yao, Y.; Zhang, Y.; Xue, M.; Chen, J.; Shen, Q. Eur. J. Inorg. Chem.
2004, 2167. (h) Coles, M. P.; Hitchcock, P. B. Eur. J. Inorg. Chem. 2004, 2662.
(i) Chen, J.-L.; Yao, Y.-M.; Luo, Y.-J.; Zhou, L.-Y.; Yong, Z.; Qi, S. J.
Organomet. Chem. 2004, 689, 1019. (j) Yao, Y.; Luo, Y.; Chen, J.; Zhang, Z.;
Zhang, Y.; Shen, Q. J. Organomet. Chem. 2003, 679, 229. (k) Luo, Y.; Yao, Y.;
Shen, Q.; Yu, K.; Weng, L. Eur. J. Inorg. Chem. 2003, 318. (l) Giesbrecht, G. R.;
Whitener, G. D.; Arnold, J. J. Chem. Soc., Dalton Trans. 2001, 923.
(8) (a) Trifonov, A. A.; Skvortsov, G. G.; Lyubov, D. M.; Skorodumova,
N. A.; Fukin, G. K.; Baranov, E. V.; Glushakova, V. N. Chem.;Eur. J.
2006, 12, 5320. (b) Feil, F.; Harder, S. Eur. J. Inorg. Chem. 2005, 4438. (c)
Trifonov, A. A.; Fedorova, E. A.; Fukin, G. K.; Bochkarev, M. N. Eur. J. Inorg.
Chem. 2004, 4396. (d) Coles, M. P.; Hitchcock, P. B. Organometallics 2003, 22,
5201.
(9) (a) Mohamed, A. A.; Mayer, A. P.; Abdou, H. E.; Irwin, M. D.; Perez,
L. M.; Fackler, J. P., Jr. Inorg. Chem. 2007, 46, 11165. (b) Pang, X. G.; Sun,
H. M.; Zhang, Y.; Shen, Q.; Zhang, H. J. Eur. J. Inorg. Chem. 2005, 1487. (c)
Subrayan, R. P.; Francis, A. H.; Kampf, J. W.; Rasmussen, P. G. Chem. Mater.
1995, 7, 2213.
(10) (a) Milanov Andrian, P.; Xu, K.; Laha, A.; Bugiel, E.; Ranjith, R.;
Schwendt, D.; Osten, H. J.; Parala, H.; Fischer Roland, A.; Devi, A. J. Am.
Chem. Soc. 2010, 132, 36. (b) Milanov, A. P.; Toader, T.; Parala, H.; Barreca, D.;
Gasparotto, A.; Bock, C.; Becker, H.-W.; Ngwashi, D. K.; Cross, R.; Paul, S.;
Kunze, U.; Fischer, R. A.; Devi, A. Chem. Mater. 2009, 21, 5443. (c) Milanov,
A. P.; Fischer, R. A.; Devi, A. Inorg. Chem. 2008, 47, 11405. (d) Devi, A.;
Bhakta, R.; Milanov, A.; Hellwig, M.; Barreca, D.; Tondello, E.; Thomas, R.;
Ehrhart, P.; Winter, M.; Fischer, R. Dalton Trans. 2007, 1671.
Synthesis of [(Me3Si)2NC(NCy)2]2ErBn (1-Er). To a toluene
(30 mL) solution of [(Me3Si)2NC(NCy)2]2Er(μ-Cl)2Li(THF)2
(0.360 g, 0.320 mmol) was added BnK (41.8 mg, 0.320 mmol) at
-30 °C. The mixture was allowed to slowly warm to room tempera-
ture and stirred for 12 h. The volatiles were removed under
vacuum, and the solid was extracted with toluene (30 mL ꢀ 2).
(12) (a) Zurawski, A.; Wirnhier, E.; Muller-Buschbaum, K. Eur. J. Inorg.
Chem. 2009, 2482. (b) Cheng, M. L.; Li, H. X.; Zhang, W. H.; Ren, Z. G.; Zhang,
Y.; Lang, M. P. Eur. J. Inorg. Chem. 2007, 1889. (c) Roger, M.; Barros, N.;
ꢀ
Arliguie, T.; Thuery, P.; Maron, L.; Ephritikhine, M. J. Am. Chem. Soc. 2006,
128, 8790. (d) Weis, E. M.; Barnes, C. L.; Duval, P. B. Inorg. Chem. 2006, 45,
10126. (e) Li, H. X.; Ren, Z. R.; Zhang, Y.; Zhang, W. H.; Lang, J. P.; Shen, Q. J.
Am. Chem. Soc. 2005, 127, 1122. (f) Evans, W. J.; Miller, K. A.; Lee, D. S.; Ziller,
J. W. Inorg. Chem. 2005, 44, 4326. (g) Banerjee, S.; Emge, T. J.; Brennan, J. G.
Inorg. Chem. 2004, 43, 6307. (h) Zhou, X. G.; Zhang, L. X.; Zhang, C. M.;
Zhang, J.; Zhu, M.; Cai, R. F.; Huang, Z. E.; Wu, Q. J. J. Organomet. Chem.
2002, 655, 120. (i) Melman, J.; Rhode, C.; Emge, T.; Brennan, J. G. Inorg. Chem.
2002, 41, 28. (j) Kornienko, A. Y.; Emge, T. J.; Brennan, J. G. J. Am. Chem. Soc.
2001, 123, 11933. (k) Zhang, L. X.; Zhou, X. G.; Huang, Z. E.; Cai, R. F.; Huang,
X. Y. Polyhedron 1999, 18, 1533. (l) Lee, J.; Freedman, D.; Melman, J.; Brewer,
M.; Sun, L.; Emge, T. J.; Long, F. H.; Brennan, J. G. Inorg. Chem. 1998, 37, 2512.
(m) Wu, Z. Z.; Huang, Z. E.; Cai, R. F.; Zhou, X. G.; Xu, Z.; You, X. Z.; Huang,
X. Y. J. Organomet. Chem. 1996, 506, 25. (n) Mashima, K.; Nakayama, Y.;
Shibahara, T.; Fukumoto, H.; Nakamura, A. Inorg. Chem. 1996, 35, 93. (o)
Poremba, P.; Noltemeyer, M.; Schmidt, H. G.; Edelmann, F. T. J. Organomet.
Chem. 1995, 501, 315. (p) Berardini, M.; Brennan, J. G. Inorg. Chem. 1995, 34,
6179. (q) Lee, J.; Brewer, M.; Berardini, M.; Brennan, J. Inorg. Chem. 1995, 34,
3215. (r) Brewer, M.; Khasnis, D.; Buretea, M.; Berardini, M.; Emge, T. J.;
Brennan, J. G. Inorg. Chem. 1994, 33, 2743.
(13) (a) Zhang, Z. X.; Li, Y. R.; Liu, R. T.; Chen, Z. X.; Weng, L. H.;
Zhou, X. G. Polyhedron 2007, 26, 4986. (b) Li, Y. R.; Pi, C. F.; Zhang, J.; Zhou,
X. G.; Chen, Z. X.; Weng, L. H. Organometallics 2005, 24, 1982.
(14) Zhou, Y. L.; Yap, G. P. A.; Richeson, D. S. Organometallics 1998, 17,
4387.
(15) Schlosser, M.; Hartmann, J. Angew. Chem., Int. Ed. Engl. 1973, 12,
508.
(11) (a) Edelmann, F. T.; Freckmann, D. M. M.; Schumann, H. Chem.
Rev. 2002, 102, 1851. (b) Zhou, X. G.; Zhu, M. J. Organomet. Chem. 2002, 647,
28. (c) Anwander, R. Lanthanides: Chemistry and Use in Organic Synthesis;
Kobayashi, S., Ed.; Springer-Verlag: Berlin, 1999; p 1. (d) Nief, F. Coord. Chem.
Rev. 1998, 178-180, 13. (e) Schumann, H.; Meese-Marktscheffel, J. A.; Esser, L.
Chem. Rev. 1995, 95, 865.