5058 Journal of Medicinal Chemistry, 2010, Vol. 53, No. 13
Oishi et al.
Acknowledgment. This research was supported in part by
the Targeted Protein Research Program and Grants-in-Aid
for Scientific Research from the Ministry of Education,
Culture, Sports, Science and Technology, Japan. We are
indebted to Tomoko Kurose for excellent technical assistance.
T.W. is grateful for the JSPS Research Fellowships for Young
Scientists.
Vestweber, D.; Cagna, G.; Schunk, S.; Schwarz, O.; Schiewe, H.;
Waldmann, H. Discovery of protein phosphatase inhibitor classes by
biology-oriented synthesis. Proc. Natl. Acad. Sci. U.S.A. 2006, 103,
^
€
10606–10611. (c) Reis-Correa, I., Jr.; Noren-M€uller, A.; Ambrosi, H. D.;
Jakupovic, S.; Saxena, K.; Schwalbe, H.; Kaiser, M.; Waldmann, H.
Identification of inhibitors for mycobacterial protein tyrosine phospha-
tase B (MptpB) by biology-oriented synthesis (BIOS). Chem. Asian J.
€
2007, 2, 1109–1126. (d) Noren-Mu€ller, A.; Wilk, W.; Saxena, K.;
Schwalbe, H.; Kaiser, M.; Waldmann, H. Discovery of a new class of
inhibitors of Mycobacterium tuberculosis protein tyrosine phosphatase B
by biology-oriented synthesis. Angew. Chem., Int. Ed. 2008, 47, 5973–
5977.
Supporting Information Available: Experimental procedures,
characterization, and bioassay data. This material is available
(12) Alternative nonindole based KSP inhibitors have been reported,
for example: (a) Brier, S.; Lemaire, D.; Debonis, S.; Forest, E.;
Kozielski, F. Identification of the protein binding region of
S-trityl-L-cysteine, a new potent inhibitor of the mitotic kinesin
Eg5. Biochemistry 2004, 43, 13072–13082. (b) Gartner, M.; Sunder-
Plassmann, N.; Seiler, J.; Utz, M.; Vernos, I.; Surrey, T.; Giannis, A.
Development and biological evaluation of potent and specific inhibitors
of mitotic Kinesin Eg5. ChemBioChem 2005, 6, 1173–1177.
(13) (a) Watanabe, T.; Ueda, S.; Inuki, S.; Oishi, S.; Fujii, N.; Ohno, H.
One-pot synthesis of carbazoles by palladium-catalyzed N-aryla-
tion and oxidative coupling. Chem. Commun. 2007, 4516–4518. (b)
Watanabe, T.; Oishi, S.; Fujii, N.; Ohno, H. Palladium-catalyzed direct
synthesis of carbazoles via one-pot N-arylation and oxidative biaryl
coupling: synthesis and mechanistic study. J. Org. Chem. 2009, 74,
4720–4726.
(14) (a) Forbes, E. J.; Stacey, M.; Tatlow, J. C.; Wragg, R. T. The
synthesis of 1-, 2- and 3-trifluoromethylcarbazoles by the Fischer-
indole method. Tetrahedron 1960, 8, 67–72. (b) Ohta, T.; Miyake, S.;
Shudo, K. A trifluoromethanesulfonic acid-catalyzed reaction of aryl-
hydrazines with benzene. Tetrahedron Lett. 1985, 26, 5811–5814. (c)
Jash, S. S.; Biswas, G. K.; Bhattacharyya, S. K.; Bhattacharyya, P.;
Chakraborty, A.; Chowdhury, B. K. Carbazole alkaloids from Glycos-
mis pentaphylla. Phytochemistry 1992, 31, 2503–2505. (d) Leteurtre,
F.; Madalengoitia, J.; Orr, A.; Guzi, T. J.; Lehnert, E.; Macdonald, T.;
Pommier, Y. Rational design and molecular effects of a new topoisome-
rase II inhibitor, azatoxin. Cancer Res. 1992, 52, 4478–4483. (e)
Molina, P.; Fresneda, P. M.; Almendros, P. Fused carbazoles by tandem
Aza Wittig/electrocyclic ring closure. Preparation of 6H-pyrido[4,3-b]-
carbazole, 11H-pyrido[4,3-a]carbazole and 11H-pyrido[3,4-a]carbazole
derivatives. Tetrahedron 1993, 49, 1223–1236. (f) Fabien, D.; Gilbert,
K. Efficient synthesis of 1,2,3,4-tetrahydro-11H-benzo[a]carbazole and
its regioselective oxidation. Synlett 2006, 7, 1021–1022. (g) Hu, L.; Li,
Z. R.; Li, Y.; Qu, J.; Ling, Y. H.; Jiang, J. D.; Boykin, D. W. Synthesis
and structure-activity relationships of carbazole sulfonamides as a
novel class of antimitotic agents against solid tumors. J. Med. Chem.
2006, 49, 6273–6282. (h) Sanz, R.; Escribano, J.; Pedrosa, M. R.;
Aguado, R.; Arnaiz, F. J. Dioxomolybdenum(VI)-catalyzed reductive
cyclization of nitroaromatics: synthesis of carbazoles and indoles. Adv.
Synth. Catal. 2007, 349, 713–718. (i) Hadjaz, F.; Yous, S.; Lebegue,
N.; Berthelot, P.; Carato, P. A mild and efficient route to 2-benzyl
tryptamine derivatives via ring-opening of β-carbolines. Tetrahedron
2008, 64, 10004–10008.
References
(1) Sawin, K. E.; LeGuellec, K.; Philippe, M.; Mitchison, T. J. Mitotic
spindle organization by a plus-end-directed microtubule motor.
Nature 1992, 359, 540–543.
(2) Kapitein, L. C.; Peterman, E. J.; Kwok, B. H.; Kim, J. H.; Kapoor,
T. M.; Schmidt, C. F. The bipolar mitotic kinesin Eg5 moves on
both microtubules that it crosslinks. Nature 2005, 435, 114–118.
(3) (a) Tao, W.; South, V. J.; Zhang, Y.; Davide, J. P.; Farrell, L.;
Kohl, N. E.; Sepp-Lorenzino, L.; Lobell, R. B. Induction of
apoptosis by an inhibitor of the mitotic kinesin KSP requires both
activation of the spindle assembly checkpoint and mitotic slippage.
Cancer Cell 2005, 8, 49–59. (b) Marcus, A. I.; Peters, U.; Thomas,
S. L.; Garrett, S.; Zelnak, A.; Kapoor, T. M.; Giannakakou, P. Mitotic
kinesin inhibitors induce mitotic arrest and cell death in Taxol-resistant
and -sensitive cancer cells. J. Biol. Chem. 2005, 280, 11569–11577.
(4) For recent reviews, see: (a) Sarli, V.; Giannis, A. Inhibitors of
mitotic kinesins: next-generation antimitotics. ChemMedChem
2006, 1, 293–298. (b) Jackson, J. R.; Patrick, D. R.; Dar, M. M.; Huang,
P. S. Targeted anti-mitotic therapies: can we improve on tubulin agents?
Nat. Rev. Cancer 2007, 7, 107–117. (c) Matsuno, K.; Sawada, J.; Asai,
A. Therapeutic potential of mitotic kinesin inhibitors in cancer. Expert
Opin. Ther. Patents 2008, 18, 253–274. (d) Sarli, V.; Giannis, A.
Targeting the kinesin spindle protein: basic principles and clinical
implications. Clin. Cancer Res. 2008, 14, 7583–7587.
(5) Mayer, T. U.; Kapoor, T. M.; Haggarty, S. J; King, R. W.;
Schreiber, S. L.; Mitchison, T. J. Small molecule inhibitor of
mitotic spindle bipolarity identified in a phenotype-based screen.
Science 1999, 286, 971–974.
(6) Nakazawa, J.; Yajima, J.; Usui, T.; Ueki, M.; Takatsuki, A.;
Imoto, M.; Toyoshima, Y. Y.; Osada, H. A novel action of
terpendole E on the motor activity of mitotic Kinesin Eg5. Chem.
Biol. 2003, 10, 131–137.
(7) (a) Huang, X. H.; Tomoda, H.; Nishida, H.; Masuma, R.; Omura,
S. Terpendoles, novel ACAT inhibitors produced by Albophoma
yamanashiensis. I. Production, isolation and biological properties.
J. Antibiot. 1995, 48, 1–4. (b) X. Huang, H.; Nishida, H.; Tomoda, H.;
Tabata, N.; Shiomi, K.; Yang, D. J.; Takayanagi, H.; Omura, S.
Terpendoles, novel ACAT inhibitors produced by Albophoma yamana-
shiensis. II. Structure elucidation of terpendoles A, B, C and D.
J. Antibiot. 1995, 48, 5–11.
(8) Hotha, S.; Yarrow, J. C.; Yang, J. G.; Garrett, S.; Renduchintala,
K. V.; Mayer, T. U.; Kapoor, T. M. HR22C16: a potent small-
molecule probe for the dynamics of cell division. Angew. Chem.,
Int. Ed. 2003, 42, 2379–2382.
(9) Okumura, H.; Nakazawa, J.; Tsuganezawa, K.; Usui, T.; Osada,
H.; Matsumoto, T.; Tanaka, A.; Yokoyama, S. Phenothiazine and
carbazole-related compounds inhibit mitotic kinesin Eg5 and
trigger apoptosis in transformed culture cells. Toxicol. Lett. 2006,
166, 44–52.
(10) For patent information including the related carbazole com-
pounds, see: Dhanak, D.; Knight, S. D.; Moore, M. L.; Newlander,
K. A. PCT Int. Appl. WO2006005063, 2006.
(15) (a) Goodwin, S.; Smith, A. F.; Horning, E. C. Alkaloids of
Ochrosia elliptica Labill. J. Am. Chem. Soc. 1959, 81, 1903–1908.
(b) Cui, C. B.; Kakeya, H.; Okada, G.; Onose, R.; Osada, H. Novel
mammalian cell cycle inhibitors, tryprostatins A, B and other diketo-
piperazines produced by Aspergillus fumigatus. I. Taxonomy, fermen-
tation, isolation and biological properties. J. Antibiot. 1996, 49, 527–
533. (c) Cui, C. B.; Yan, S. Y.; Cai, B.; Yao, X. S. Carbazole alkaloids as
new cell cycle inhibitor and apoptosis inducers from Clausena dunniana
Levl. J. Asian Nat. Prod. Res. 2002, 4, 233–241.
(16) (a) Funayama, Y.; Nishio, K.; Wakabayashi, K.; Nagao, M.;
Shimoi, K.; Ohira, T.; Hasegawa, S.; Saijo, N. Effects of β- and
γ-carboline derivatives of DNA topoisomerase activities. Mutat.
Res. 1996, 349, 183–191. (b) Cao, R.; Peng, W.; Chen, H.; Ma, Y.; Liu,
X.; Hou, X.; Guan, H.; Xu, A. DNA binding properties of 9-substituted
harmine derivatives. Biochem. Biophys. Res. Commun. 2005, 338,
1557–1563.
(11) Similar scaffold identification approaches for other target mole-
cules have been reported, see: (a) Koch, M. A.; Schuffenhauer, A.;
Scheck, M.; Wetzel, S.; Casaulta, M.; Odermatt, A.; Ertl, P.;
Waldmann, H. Charting biologically relevant chemical space: a
structural classification of natural products (SCONP). Proc. Natl.
(17) Carbazoles 8e,f and 9e apparently activated the topoisomerase
II-mediated relaxation. This activity was not due to the direct DNA
relaxation by the compounds (see the Supporting Information).
(18) The reason of the unprecedented phenotype observed remains
unsolved.
€
Acad. Sci. U.S.A. 2005, 102, 17272–17277. (b) Noren-M€uller, A.;
^
Reis-Correa, I., Jr.; Prinz, H.; Rosenbaum, C.; Saxena, K.; Schwalbe, H. J.;