Organometallics 2010, 29, 2831–2834 2831
DOI: 10.1021/om100331z
Catalytic Enantioselective Addition of Cyclic β-Keto Esters with
Activated Olefins and N-Boc Imines Using Chiral C2-Symmetric Cationic
Pd2þ N-Heterocyclic Carbene (NHC) Diaqua Complexes
Zhen Liu and Min Shi*
State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry,
Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People’s Republic of China
Received April 22, 2010
Summary: The asymmetric addition of cyclic β-keto esters to
activated olefins and N-Boc imines was realized by using
chiral cationic C2-symmetric N-heterocyclic carbene (NHC)
Pd2þ diaqua complexes 1a,b as the catalysts, producing the
corresponding adducts in moderate to high yields (up to 95%)
and with good to high enantioselectivities (up to 96% ee).
Nevertheless, the most significant observation is that when
the (R)-NHC Pd2þ diaqua complex was used in these reac-
tions, different absolute configurations were observed in
comparison to those obtained with catalysts obtained from
(R)-phosphane ligands.
transformations have opened up the possibility of the develop-
ment of enantioselective catalysis.4-6
Michael- or Mannich-type addition reactions of acidic
carbon nucleophiles to a variety of activated olefins or
imines are some of the most important and practically useful
carbon-carbon bond-forming reactions in organic synthesis.7
In these reactions, the use of readily enolizable compounds
such as β-keto esters as nucleophiles for the construction of
chiral tertiary carbon centers have especially attracted much
attention.8 Thus far, a number of Pd enolates of ketones have
been successfully applied to the above reactions, affording
the corresponding adducts in high yields and good enantio-
meric excesses under mild conditions.9 For example, Sodeoka
and co-workers originally reported that Pd (R)-phosphane
ligand diaqua complexes reacted with 1,3-dicarbonyl com-
pounds, such asβ-keto esters, to give chiral Pdenolates. Using
this novel Pd enolate chemistry, efficient catalytic enantiose-
lective addition reactions with various electrophiles have been
achieved.10 On the other hand, we previously reported the
synthesis of a series of the chiral cationic Pd2þ NHC diaqua
complexes and their application in the catalytic enantioselec-
tive arylation of N-tosylarylimines with arylboronic acids.11b
Recently, N-heterocyclic carbenes (NHCs) have become a
very important class of ligands in organometallic chemistry
and catalysis.1 On the basis of recent achievements in this
field, N-heterocyclic carbenes (NHCs) clearly are not just
“phosphane mimics”, as they are sometimes called in the
literature, since NHCs as ligands or catalysts showed several
advantages over their phosphine counterparts. The NHCs
have the general advantage of being better σ donors and
weaker π acceptors than phosphine ligands, and these
ligands are also air and moisture stable. These advantages
have attracted several research groups to search for new
catalytic systems using NHCs as ancillary ligands for many
catalytic reactions.2 Recently, NHC-Pd complexes have sig-
nificantly emerged as effective catalysts for a variety of coupling
reactions.3 However, to the best of our knowledge, the promise
of a highly active and enantioselective NHC-Pd catalyst
has not been fulfilled, even though many palladium-mediated
(6) (a) Sato, Y.; Imakuni, N.; Mori, M. Adv. Synth. Catal. 2003, 345,
488. (b) Sato, Y.; Imakuni, N.; Hirose, T.; Wakamatsu, H.; Mori, M.
J. Organomet. Chem. 2003, 687, 392.
(7) (a) Perlmutter, P. Conjugate Addition Reactions in Organic Synth-
esis, Pergamon: Oxford, U.K., 1992. (b) Jung, M. E. In Comprehensive
Organic Synthesis; Trost, B. M., Fleming, I., Heathcock, C. H., Eds.;
Pergamon: New York, 1991; Vol. 4, pp 1-67. (c) Arend, M.; Westermann,
B.; Risch, N. Angew. Chem., Int. Ed. 1998, 37, 1044.
(8) For selected examples of catalysts: (a) Watanabe, M.; Ikagawa,
A.; Wang, H.; Murata, K.; Ikariya, T. J. Am. Chem. Soc. 2004, 126,
11148and references cited therein. (b) Sasai, H.; Arai, T.; Satow, Y.; Houk,
K. N.; Shibasaki, M. J. Am. Chem. Soc. 1995, 117, 6194. (c) Corey, E. J.;
Noe, M. C.; Xu, F. Tetrahedron Lett. 1998, 39, 5347. (d) Hagiwara, E.; Fujii,
A.; Sodeoka, M. J. Am. Chem. Soc. 1998, 120, 2474.
(9) For representative examples which involve putative palladium
enolates: (a) Ito, Y.; Aoyama, H.; Hirao, T.; Mochizuki, A.; Saegusa, T.
J. Am. Chem. Soc. 1979, 101, 494. (b) Palucki, M.; Buckwald, S. L. J. Am.
Chem. Soc. 1997, 119, 11108. (c) Hamann, B. C.; Hartwig, J. F. J. Am.
Chem. Soc. 1997, 119, 12382. (d) Satoh, T.; Kawamura, Y.; Miura, M.;
Nomura, M. Angew. Chem., Int. Ed. 1997, 36, 1740. For an excellent
textbook: (e) Tsuji, J. Palladium Reagents and Catalysts: New Perspective
for the 21st Century; Wiley: Chichester, U.K., 2004.
(10) (a) Sodeoka, M.; Ohrai, K.; Shibasaki, M. J. Org. Chem. 1995,
60, 2648. (b) Hagiwara, E.; Fujii, A.; Sodeoka, M. J. Am. Chem. Soc. 1998,
120, 2474. (c) Fujii, A.; Hagiwara, E.; Sodeoka, M. J. Am. Chem. Soc. 1999,
121, 5450. (d) Hamashima, Y.; Hotta, D.; Sodeoka, M. J. Am. Chem. Soc.
2002, 124, 11240. (e) Hamashima, Y.; Yagi, K.; Takano, H.; Tamas, L.;
Sodeoka, M. J. Am. Chem. Soc. 2002, 124, 14530. (f) Hamashima, Y.;
Sodeoka, M. Chem. Rec. 2004, 4, 231. (g) Hamashima, Y.; Hotta, D.;
Umebayashi, N.; Tsuchiya, Y.; Suzuki, T.; Sodeoka, M. Adv. Synth. Catal.
2005, 347, 1576. (h) Hamashima, Y.; Sasamoto, N.; Hotta, D.; Somei, H.;
Umebayashi, N.; Sodeoka, M. Angew. Chem., Int. Ed. 2005, 44, 1525.
*Fax: 86-21-64166128. Mshi@mail.sioc.ac.cn.
(1) (a) Bourisou, D.; Guerret, O.; Gabbai, F. P.; Bertrand, G. Chem.
Rev. 2000, 100, 39. (b) Herrmann, W. A. Angew. Chem., Int. Ed. 2002, 41,
1290. (c) Radiusa, U.; Bickelhaupt, F. M. Coord. Chem. Rev. 2009, 253, 678.
(2) (a) Choi, T. -L.; Grubbs, R. H. Angew. Chem., Int. Ed. 2003, 42,
1743. (b) Navarro, O.; Kelly, R. A., III; Nolan, S. P. J. Am. Chem. Soc. 2003,
125, 16194. (c) Marion, N.; Navarro, O.; Mei, J.; Stevens, E. D.; Scott, N. M.;
Nolan, S. P. J. Am. Chem. Soc. 2006, 128, 4101. (d) Albrecht, M.;
Miecznikowski, J. R.; Samuel, A.; Faller, J. W.; Crabtree, R. H. Organome-
tallics 2002, 21, 3596.
(3) (a) Herrmann, W. A.; Elison, M.; Fisher, J.; Koecher, C.; Artus,
G. R. J. Angew. Chem., Int. Ed. 1995, 34, 2371. (b) Albert, K.; Gisdakis, P.;
Rosch, N. Organometallics 1998, 17, 1608. (c) Kantchev, E. A. B.; O'Brien,
C. J.; Organ, M. G. Angew. Chem., Int. Ed. 2007, 46, 2768.
(4) (a) Glorius, F.; Altenhoff, G.; Goddard, R.; Lehmann, C. Chem.
Commun. 2002, 2704. (b) Lee, S.; Hartwig, J. F. J. Org. Chem. 2001, 66,
3402. (c) Bonnet, L. G.; Douthwaite, R. E.; Hodgson, R. Organometallics
2003, 22, 4384.
(5) (a) Bonnet, L. G.; Douthwaite, R. E.; Kariuki, B. M. Organome-
tallics 2003, 22, 4187. (b) Flahaut, A.; Baltaze, J. P.; Roland, S.; Mangeney, P.
J. Organomet. Chem. 2006, 691, 3498.
r
2010 American Chemical Society
Published on Web 06/01/2010
pubs.acs.org/Organometallics