D. García et al. / Tetrahedron Letters 50 (2009) 4710–4713
4713
2613–2616; (e) Sun, X.-W.; Xu, M.-H.; Lin, G.-Q. Org. Lett. 2006, 8, 4979–4982;
(f) Kolodney, G.; Sklute, G.; Perrone, S.; Knochel, P.; Marek, I. Angew. Chem., Int.
Ed. 2007, 46, 9291–9294; (g) Chemla, F.; Ferreira, F.; Gaucher, X.; Palais, L.
Synthesis 2007, 1235–1241; (h) Voituriez, A.; Pérez-Luna, A.; Ferreira, F.;
Botuha, C.; Chemla, F. Org. Lett. 2009, 11, 931–934.
23. Typical procedure for the diastereoselective synthesis of compounds 4a and 4a0. To
a blue suspension of lithium powder (140 mg, 20.0 mmol) and a catalytic
amount of DTBB (80.0 mg, 0.3 mmol) in THF (5 mL) was added dropwise a
solution of phthalan (1, 360 mg, 3.0 mmol) under argon and the mixture was
stirred at 0 °C for 45 min. Then, the excess of lithium was filtered off and a
solution of ZnMe2 (3.0 mL, 1.0 M in hexane) was added dropwise and stirring
was continued for 15 min at room temperature. After this, the reaction mixture
6. (a) Foubelo, F.; Yus, M. Tetrahedron: Asymmetry 2004, 15, 3823–3825; (b) Wang,
Z.-Q.; Feng, C.-Q.; Xu, M.-H.; Lin, G.-Q. J. Am. Chem. Soc. 2007, 129, 5336–5337;
(c) Sun, X.-W.; Liu, M.; Xu, M.-H.; Lin, G.-Q. Org. Lett. 2008, 10, 1259–1262; (d)
González-Gómez, J. C.; Foubelo, F.; Yus, M. Synlett 2008, 2777–2780; (e)
Medjahdi, M.; González-Gómez, J. C.; Foubelo, F.; Yus, M. Heterocycles 2008, 76,
569–581.
7. For reviews, see: (a) Davis, F. A.; Zhou, P.; Chen, B.-C. Chem. Soc. Rev. 1998, 27,
13–18; (b) Ellman, J. A.; Owens, T. D.; Tang, T. P. Acc. Chem. Res. 2002, 35, 984–
995; (c) Ellman, J. A. Pure Appl. Chem. 2003, 75, 39–46; (d) Zhou, P.; Chen, B.-C.;
Davis, F. A. Tetrahedron 2004, 60, 8003–8030; (e) Morton, D.; Stockman, R. A.
Tetrahedron 2006, 62, 8869–8905; (f) Lin, G.-Q.; Xu, M.-H.; Zhong, Y.-W.; Sun,
X.-W. Acc. Chem. Res. 2008, 41, 831–840; (g) Ferreira, F.; Botuha, C.; Chemla, F.;
Pérez-Luna, A. Chem. Soc. Rev. 2009, 38, 1162–1186.
was cooled down to ꢀ65 °C and
a solution of aldimine (R)-3a (209 mg,
1.0 mmol) in THF (0.4 mL) was added dropwise. After 12 h at the same
temperature, finally the reaction mixture was hydrolysed with water (5 mL),
extracted with ethyl acetate (3 ꢂ 15 mL) once at rt, dried over anhydrous
MgSO4 and evaporated (15 Torr). The residue was purified by column
chromatography (silica gel, hexane/ethyl acetate) to yield pure products 4a
and
phenylethanamine (4a): mp 129–130 °C (pentane/dichloromethane);
ꢀ40 (c 0.16, CH2Cl2); Rf: 0.20 (n-hexane/EtOAc: 1:2); IR (KBr) 3450–3310,
2920 cmꢀ1 1H NMR d 1.00 (s, 9H), 3.02 (dd, J = 13.6, 6.3 Hz, 1H), 3.43 (dd, J = 13.6,
4a0.
(1R,RS)-N-tert-Butylsulfinyl-2-(2-hydroxymethylphenyl)-1-
½ ꢃ
a 2D0
m
;
8.7 Hz, 1H), 4.22 (br s, 1H), 4.48 (d, J = 11.5 Hz, 1H), 4.59–4.65 (m, 1H), 4.72 (d,
J = 11.5 Hz, 1H), 5.11 (br s, 1H), 7.10–7.15 (m, 1H), 7.16–7.24 (m, 2H), 7.23–7.32
(m, 4H), 7.41 (d, J = 7.2 Hz, 2H); 13C NMR d 22.5 (CH3), 40.2 (CH2), 56.3 (C), 60.9
(CH2), 63.0 (CH), 126.8, 127.2, 127.8, 127.9, 128.5, 129.6, 130.3, 136.7, 139.0,
142.5 (ArC); MS (MALDI-TOF): m/z 332 (M+H)+; HRMS: (M-H2O)+ found
313.1487, C19H23NOS requires 313.1500. (1S,RS)-N-tert-Butylsulfinyl-2-(2-
hydroxymethylphenyl)-1-phenylethanamine (4a0): mp 127–128 °C (pentane/
8. (a) Weix, D. J.; Ellman, J. A. Org. Lett. 2003, 5, 1317–1320; (b) Weix, D. J.; Ellman,
J. A. Org. Synth. 2005, 82, 157–165.
9. (a) Wakayama, M.; Ellman, J. A. J. Org. Chem. 2009, 74, 2646–2650; (b)
Aggarwal, V. K.; Barbero, N.; McGarrigle, E. M.; Mickle, G.; Navas, R.; Suárez, J.
R.; Unthank, M. G.; Yar, M. Tetrahedron Lett. 2009, 50, 3482–3484.
10. For reviews on functionalised organolithium compounds, see: (a) Nájera, C.;
Yus, M. Trends Org. Chem. 1991, 2, 155–181; (b) Nájera, C.; Yus, M. Org. Prep.
Proc. Int. 1995, 27, 383–457; (c) Nájera, C.; Yus, M. Recent Res. Dev. Org. Chem.
1997, 1, 67–96; (d) Yus, M.; Foubelo, F. Rev. Heteroatom Chem. 1997, 17, 73–
107; (e) Nájera, C.; Yus, M. Curr. Org. Chem. 2003, 7, 867–926; (f) Nájera, C.;
Sansano, J. M.; Yus, M. Tetrahedron 2003, 59, 9255–9303; (g) Chinchilla, R.;
Nájera, C.; Yus, M. Chem. Rev. 2004, 104, 2667–2722; (h) Chinchilla, R.; Nájera,
C.; Yus, M. Tetrahedron 2005, 61, 3139–3176; (i) See also the special issue of
Tetrahedron Symposium in Print (Eds.: Nájera, C; Yus, M.) devoted to
‘Functionalised Organolithium Compounds’, Tetrahedron 2005, 61, issue no.
13.; (j) Yus, M.; Foubelo, F. In Handbook of Functionalized Organometallics;
Knochel, P., Ed.; Wiley-VCH: Weinheim, 2005. Chapter 2; (k) Foubelo, F.; Yus,
M. Chem. Soc. Rev. 2008, 37, 2620–2633.
dichloromethane); ½a D20
ꢃ
ꢀ38 (c 0.48, CH2Cl2); Rf: 0.14 (n-hexane/EtOAc: 1:2); IR
m
(KBr) 3430–3300, 2923 cmꢀ1
;
1H NMR d 1.10 (s, 9H), 3.12 (dd, J = 11.8, 5.3 Hz,
1H), 3.20 (dd, J = 11.8, 6.3 Hz, 1H), 3.70 (br s, 1H), 4.10–4.16 (m, 1H), 4.62–4.71
(m, 3H), 7.11–7.16 (m, 1H), 7.26–7.34 (m, 8H); 13C NMR d 22.7 (CH3), 42.1 (CH2),
56.0 (C), 60.8 (CH2), 63.3 (CH), 127.3, 127.5, 127.8, 128.5, 128.7, 130.2, 130.8,
136.2, 139.6, 142.6 (ArC); MS (MALDI-TOF): m/z 332 (M+H)+.
24. Crystal data (excluding structure factors deposited at the Cambridge
Crystallographic Data Centre as supplementary publication number CCDC
727086):
b = 18.4104(16) Å, c = 10.3906(9) Å, b = 106.513(2); V = 1905.5(3) Å3; space
group P2(1); Z = 4; Dc = 1.155 Mg mꢀ3 = 0.179 mmꢀ1
k = 0.71073 Å;
F(000) = 712; T = 23 1 °C. Data collection was performed on a Bruker Smart
CCD diffractometer, based on three
C19H25NO2S,
M = 331.46;
monoclinic,
a = 10.3893(9) Å,
;
l
;
11. For reviews, see: (a) Yus, M.; Foubelo, F. Rev. Heteroatom Chem. 1997, 17, 73–
107; (b) Yus, M.; Foubelo, F. In Targets in Heterocyclic Systems; Attanasi, O. A.,
Spinelli, D., Eds.; Italian Society of Chemistry: Rome, 2002; pp 136–171; (c)
Yus, M. Pure Appl. Chem. 2003, 75, 1453–1475; (d) Yus, M.; Foubelo, F. Adv.
Heterocycl. Chem. 2006, 91, 135–158.
x-scan runs (starting = ꢀ34°) at values
u = 0°, 120°, 240° with the detector at 2h = ꢀ32°. For each of these runs, 606
frames were collected at 0.3° intervals and 30 s per frame. An additional run at
u = 0° of 100 frames was collected to improve redundancy. The diffraction
frames were integrated using the program SAINT (SAINT Version 6.02A: Area-
12. For reviews, see: (a) Yus, M. Chem. Soc. Rev. 1996, 25, 155–161; (b) Ramón, D. J.;
Yus, M. Eur. J. Org. Chem. 2000, 225–237; (c) Yus, M. Synlett 2001, 1197–1205;
(d) Yus, M.; Ramón, D. J. Lat. J. Chem. 2002, 79–92; (e) Ramón, D. J.; Yus, M. Rev.
Cubana Quim. 2002, 14, 75–115; (f) Yus, M.. In The Chemistry of Organolithium
Compounds; Rappoport, Z., Marek, I., Eds.; John Wiley & Sons: Chichester, 2004;
Vol. 1,. Part 2, Chapter 11.
13. Almena, J.; Foubelo, F.; Yus, M. Tetrahedron 1995, 51, 3351–3364.
14. (a) Soler, T.; Bachki, A.; Falvello, L. R.; Foubelo, F.; Yus, M. Tetrahedron:
Asymmetry 1998, 9, 3939–3943; (b) Soler, T.; Bachki, A.; Falvello, L. R.; Foubelo,
F.; Yus, M. Tetrahedron: Asymmetry 2000, 11, 493–517.
15. (a) Falvello, L. R.; Foubelo, F.; Soler, T.; Yus, M. Tetrahedron: Asymmetry 2000,
11, 2063–2066; (b) Foubelo, F.; Soler, T.; Yus, M. Tetrahedron: Asymmetry 2001,
12, 801–810.
16. Foubelo, F.; Gómez, C.; Gutiérrez, A.; Yus, M. J. Heterocycl. Chem. 2000, 37,
1061–1064.
Detector Integration Software.; Siemens Industrial Automation, Inc.: Madison,
WI, 1995) and the integrated intensities were corrected for Lorentz-
polarisation effects with SADABS (Sheldrick, G. M. SADABS
: Area-Detector
Absorption Correction; Göttingen University, 1996). The structure was solved
by direct methods27 and was refined to all 7474 unique Fo by full matrix least
squares.27 All the hydrogen atoms were placed at idealised positions and
refined as rigid atoms. Final wR2 = 0.1176 for all data and 429 parameters;
R1 = 0.0454 for 6318 Fo > 4r(Fo).
25. (a) Bharatam, P. V.; Amita; Kaur, D. J. Phys. Org. Chem. 2002, 15, 197–203; (b)
Bharatam, P. V.; Uppal, P.; Amita; Kaur, D. J. Chem. Soc. Perkin Trans. 2 2000, 43–
50.
26. Typical procedure for stereoselective synthesis of compound 6a. To a stirred
solution of 4a (165 mg, 0.50 mmol) in MeOH (6 mL) was added a 4 M HCl
(1 mL) solution in dioxane at 0 °C. After 3 h stirring at this temperature, a
saturated NaHCO3 solution was added. The reaction mixture was extracted
with ethyl acetate (3 ꢂ 10 mL), dried over anhydrous MgSO4 and evaporated
(15 Torr). The residue was taken up in chloroform (5 mL), and thionyl chloride
(0.1 mL, 1.7 mmol) was added at 0 °C. The solution was stirred at 50 °C for 4 h.
After this, solvents were evaporated (15 Torr) and the resulting residue was
dissolved in THF (5 mL) and a 5 M sodium hydroxide solution (10 mL) was
added. The resulting mixture was vigorously stirred for 10 h at 20 °C and then
it was extracted with ethyl acetate (3 ꢂ 15 mL), dried over anhydrous MgSO4
and evaporated (15 Torr). The residue was purified by column chromatography
(silica gel, chloroform/methanol) to yield pure title product (R)-3-phenyl-
17. (a) Pastor, I. M.; Yus, M. Tetrahedron Lett. 2000, 41, 1589–1592; (b) Pastor, I. M.;
Yus, M. Tetrahedron 2001, 57, 2371–2378; (c) Yus, M.; Gomis, J. Tetrahedron
Lett. 2001, 42, 5721–5724; (d) Yus, M.; Gomis, J. Eur. J. Org. Chem. 2002, 1989–
1995; (e) Yus, M.; Gomis, J. Eur. J. Org. Chem. 2003, 2043–2048.
18. Azzena, U.; Demartis, S.; Melloni, G. J. Org. Chem. 1996, 61, 4913–4919.
19. (a) Foubelo, F.; García, D.; Moreno, B.; Yus, M. Tetrahedron Lett. 2007, 48, 3379–
3383; (b) García, D.; Foubelo, F.; Yus, M. Tetrahedron 2008, 64, 4275–4286.
20. (a) García Ruano, J. L.; Carreño, M. C.; Toledo, M. A.; Aguirre, J. M.; Aranda, M.
T.; Fischer, J. Angew. Chem., Int. Ed. 2000, 39, 2736–2737; (b) García Ruano, J. L.;
Alemán, J.; Soriano, J. F. Org. Lett. 2003, 5, 677–680; (c) García Ruano, J. L.;
Alemán, J. Org. Lett. 2003, 5, 4513–4516; (d) García Ruano, J. L.; Aranda, M. T.;
Aguirre, J. M. Tetrahedron 2004, 60, 5383–5392; (e) Arroyo, Y.; Meana, A.;
Rodríguez, J. F.; Santos, M.; Sanz-Tejedor, M. A.; García Ruano, J. L. J. Org. Chem.
2005, 70, 3914–3920; (f) García Ruano, J. L.; Alemán, J.; Parra, A. J. Am. Chem.
Soc. 2005, 127, 13048–13054; (g) García Ruano, J. L.; Alemán, J.; Cid, M. B.
Synthesis 2006, 687–691; (h) Arroyo, Y.; Rodríguez, J. F.; Santos, M.; Sanz
Tejedor, M. A.; García Ruano, J. L. J. Org. Chem. 2007, 72, 1035–1038; (i) Arroyo,
Y.; Meana, A.; Sanz Tejedor, M. A.; Alonso, I.; García Ruano, J. L. J. Org. Chem.
2009, 74, 764–772.
1,2,3,4-tetrahydroisoquinoline (6a):28 a 2D0
½ ꢃ +125 (c 0.55, CH2Cl2); Rf: 0.34
(chloroform/methanol: 10:1); HPLC analysis (HPLC analyses were performed
on a JASCO 200-series equipped with a CHIRALCEL-OJ column, 1.0 mL/min,
k = 215 nm, 99:1 n-hexane/i-PrOH), tR = 79.7 min; IR
m (KBr) 3420–3385, 3063,
3026, 2923, 2851 cmꢀ1 1H NMR d 2.02 (br s, 1H), 3.02 (d, J = 7.5 Hz, 2H), 4.05
;
(t, J = 7.5 Hz, 1H), 4.17 (d, J = 15.5 Hz, 1H), 4.28 (d, J = 15.5 Hz, 1H), 7.07–7.18
(m, 4H), 7.29–7.40 (m, 3H), 7.44 (d, J = 7.2 Hz, 2H); 13C NMR d 37.8 (CH2), 49.3
(CH), 58.7 (CH2), 126.1, 126.4, 126.8, 127.6, 128.6, 128.8, 129.2, 134.7, 134.8,
143.9 (ArC); MS: m/z 209 (M+, 33%), 208 (26), 207 (26), 206 (31), 132 (16), 130
(12), 105 (22), 104 (100), 103 (29), 102 (14), 90 (10), 89 (21), 78 (29), 77 (26),
76 (10); HRMS: M+ found 209.1204, C15H15N requires 209.1204.
21. See, for instance: Liu, G.; Cogan, D. A.; Owens, T. D.; Tang, T. P.; Ellman, J. A. J.
Org. Chem. 1999, 64, 1278–1284.
22. (a) Almansa, R.; Guijarro, D.; Yus, M. Tetrahedron: Asymmetry 2008, 19, 603–
606; (b) Almansa, R.; Guijarro, D.; Yus, M. Tetrahedron: Asymmetry 2008, 19,
2484–2491.
27. SHELX97 [includes SHELXS97, SHELXL97 and CIFTAB]—Programs for Crystal Structure
Analysis (Release 97-2). Sheldrick, G. M., Institüt für Anorganische Chemie der
Universität, Tammanstrasse 4, D-3400 Göttingen, Germany, 1998.
28. Enders, D.; Braig, V.; Boudou, M.; Raabe, G. Synthesis 2004, 2980–2990.