Published on Web 06/10/2010
Identifying Diversity in Nanoscale Electrical Break Junctions
Santiago Mart´ın,†,| Iain Grace,‡ Martin R. Bryce,*,§ Changsheng Wang,§
Rukkiat Jitchati,§,⊥ Andrei S. Batsanov,§ Simon J. Higgins,† Colin J. Lambert,*,‡ and
Richard J. Nichols*,†
Centre for Nanoscale Science and Department of Chemistry, UniVersity of LiVerpool,
LiVerpool L69 7ZD, U.K., Department of Physics, Lancaster UniVersity,
Lancaster LA1 4YB, U.K., Department of Chemistry and Centre for Molecular and Nanoscale
Electronics, Durham UniVersity, Durham DH1 3LE, U.K., Departamento de Qu´ımica
Orga´nica-Qu´ımica F´ısica, Facultad de Ciencias, UniVersidad de Zaragoza, 50009 Zaragoza, Spain,
and AdVanced Organic Materials and DeVices Laboratory, Department of Chemistry, Faculty of
Science, Ubon Ratchathani UniVersity, Warinchumrap, Ubon Ratchathani 34190, Thailand
Received April 20, 2010; E-mail: r.j.nichols@liverpool.ac.uk; m.r.bryce@durham.ac.uk;
Abstract: The realization of molecular-scale electronic devices will require the development of novel
strategies for controlling electrical properties of metal|molecule|metal junctions, down to the single
molecule level. Here, we show that it is possible to exert chemical control over the formation of
metal|molecule...molecule|metal junctions in which the molecules interact by π-stacking. The tip of an
STM is used to form one contact, and the substrate the other; the molecules are conjugated
oligophenyleneethynylenes (OPEs). Supramolecular π-π interactions allow current to flow through
the junction, but not if bulky tert-butyl substituents on the phenyl rings prevent such interactions. For
the first time, we find evidence that π-stacked junctions can form even for OPEs with two thiol contacts.
Furthermore, we find evidence for metal|molecule|metal junctions involving oligophenyleneethynylene
monothiols, in which the second contact must be formed by the interaction of the π-electrons of the
terminal phenyl ring with the metal surface.
graphically defined nanogaps,3,14 or chemical synthesis of
nanoscale structures bridged by target molecules.15 The mol-
ecules investigated have increased in sophistication lately, to
encompass “longer” molecular bridges of organic or metal-
organic oligomers,6,16-21 supramolecular interactions such as
double-stranded DNA,22-26 noncovalent bonding of individual
Introduction
The feat of trapping single molecules within contact junctions
can be achieved through a number of techniques which utilize
scanning probe microscopes,1-6 break junctions,7-13 litho-
† Department of Chemistry, University of Liverpool.
‡ Department of Physics, Lancaster University.
§ Department of Chemistry, Durham University.
| Departamento de Quimica Organica-Quimica Fisica, Zaragoza University.
⊥ Department of Chemistry, Ubon Ratchathani University.
(1) Xu, B. Q.; Tao, N. J. J. Science 2003, 301, 1221–1223.
(2) Cui, X. D.; Primak, A.; Zarate, X.; Tomfohr, J.; Sankey, O. F.; Moore,
A. L.; Moore, T. A.; Gust, D.; Harris, G.; Lindsay, S. M. Science
2001, 294, 571–574.
(12) Huber, R.; Gonzalez, M. T.; Wu, S.; Langer, M.; Grunder, S.; Horhoiu,
V.; Mayor, M.; Bryce, M. R.; Wang, C. S.; Jitchati, R.; Schonenberger,
C.; Calame, M. J. Am. Chem. Soc. 2008, 130, 1080–1084.
(13) Kergueris, C.; Bourgoin, J. P.; Palacin, S.; Esteve, D.; Urbina, C.;
Magoga, M.; Joachim, C. Phys. ReV. B 1999, 59, 12505–12513.
(14) Osorio, E. A.; Bjornholm, T.; Lehn, J. M.; Ruben, M.; van der Zant,
H. S. J. J. Phys.: Condens. Matter 2008, 20, 374121.
(15) Champagne, A. R.; Pasupathy, A. N.; Ralph, D. C. Nano Lett. 2005,
5, 305–308.
(3) Kubatkin, S.; Danilov, A.; Hjort, M.; Cornil, J.; Bredas, J. L.; Stuhr-
Hansen, N.; Hedegard, P.; Bjornholm, T. Nature 2003, 425, 698–
701.
(4) Haiss, W.; van Zalinge, H.; Higgins, S. J.; Bethell, D.; Hobenreich,
H.; Schiffrin, D. J.; Nichols, R. J. J. Am. Chem. Soc. 2003, 125, 15294–
15295.
(16) Sedghi, G.; Sawada, K.; Esdaile, L. J.; Hoffmann, M.; Anderson, H. L.;
Bethell, D.; Haiss, W.; Higgins, S. J.; Nichols, R. J. J. Am. Chem.
Soc. 2008, 130, 8582–8583.
(5) Haiss, W.; Nichols, R. J.; van Zalinge, H.; Higgins, S. J.; Bethell, D.;
Schiffrin, D. J. Phys. Chem. Chem. Phys. 2004, 6, 4330–4337.
(6) Tao, N. J. Nat. Nanotechnol. 2006, 1, 173–181.
(7) Reed, M. A.; Zhou, C.; Muller, C. J.; Burgin, T. P.; Tour, J. M. Science
1997, 278, 252–254.
(17) Wang, C. S.; Batsanov, A. S.; Bryce, M. R.; Martin, S.; Nichols, R. J.;
Higgins, S. J.; Garcia-Suarez, V. M.; Lambert, C. J. J. Am. Chem.
Soc. 2009, 131, 15647–15654.
(18) Wu, S. M.; Gonzalez, M. T.; Huber, R.; Grunder, S.; Mayor, M.;
Schonenberger, C.; Calame, M. Nat. Nanotechnol. 2008, 3, 569–574.
(19) Yamada, R.; Kumazawa, H.; Noutoshi, T.; Tanaka, S.; Tada, H. Nano
Lett. 2008, 8, 1237–1240.
(8) Weber, H. B.; Reichert, J.; Weigend, F.; Ochs, R.; Beckmann, D.;
Mayor, M.; Ahlrichs, R.; von Lohneysen, H. Chem. Phys. 2002, 281,
113–125.
(20) Leary, E.; Van Zalinge, H.; Higgins, S. J.; Nichols, R. J.; de Biani,
F. F.; Leoni, P.; Marchetti, L.; Zanello, P. Phys. Chem. Chem. Phys.
2009, 11, 5198–5202.
(9) Smit, R. H. M.; Noat, Y.; Untiedt, C.; Lang, N. D.; van Hemert, M. C.;
van Ruitenbeek, J. M. Nature 2002, 419, 906–909.
(10) Gonzalez, M. T.; Wu, S. M.; Huber, R.; van der Molen, S. J.;
Schonenberger, C.; Calame, M. Nano Lett. 2006, 6, 2238–2242.
(11) Venkataraman, L.; Klare, J. E.; Nuckolls, C.; Hybertsen, M. S.;
Steigerwald, M. L. Nature 2006, 442, 904–907.
(21) Mayor, M.; von Hanisch, C.; Weber, H. B.; Reichert, J.; Beckmann,
D. Angew. Chem., Int. Ed. 2002, 41, 1183–1186.
(22) Xu, B. Q.; Zhang, P. M.; Li, X. L.; Tao, N. J. Nano Lett. 2004, 4,
1105–1108.
9
10.1021/ja103327f 2010 American Chemical Society
J. AM. CHEM. SOC. 2010, 132, 9157–9164 9157