Chem. Mater. 2010, 22, 3535–3542 3535
DOI:10.1021/cm100993j
Highly Efficient Blue-Green and White Light-Emitting Electrochemical
Cells Based on a Cationic Iridium Complex with a Bulky Side Group
Lei He, Lian Duan,* Juan Qiao, Guifang Dong, Liduo Wang, and Yong Qiu*
Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education
Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
Received March 11, 2010
Blue-green-emitting cationic iridium complex with high luminescent efficiencies in both solutions and
solid-states are essential for high-performance white light-emitting electrochemical cells (LECs). We
report here an efficient blue-green-emitting cationic iridium complex [Ir(dfppz)2(tp-pyim)]PF6, using
1-(2,4-difluorophenyl)-1H-pyrazole (dfppz) as the cyclometalated ligand and 2-(1-(4-tritylphenyl)-1H-
imidazol-2-yl)pyridine (tp-pyim) as the ancillary ligand. [Ir(dfppz)2(tp-pyim)]PF6 emits efficient blue-
green light with a luminescent quantum yield of 0.54 in CH3CN solution. Because of the sterically bulky
group 4-tritylphenyl that is attached to the ancillary ligand, the intermolecular interaction and excited-
state self-quenching of [Ir(dfppz)2(tp-pyim)]PF6 in solid states is significantly suppressed. Theoretical
calculations reveal that the emission from [Ir(dfppz)2(tp-pyim)]PF6 has both metal-to-ligand charge-
3
transfer and ligand-centered π-π* character. LECs based on [Ir(dfppz)2(tp-pyim)]PF6 show highly
efficient blue-green electroluminescence with peak current efficiency, external quantum efficiency, and
power efficiency of 18.3 cd A-1, 7.6%, and 18.0 lm W-1, respectively. White LECs based on [Ir(dfppz)2-
(tp-pyim)]PF6 give warm-white light, with Commission Internationale de L’Eclairage coordinates of
(0.37, 0.41), a color-rendering index up to 80, and a peak power efficiency of 11.2 lm W-1
.
Introduction
and tunable light emission color.2,3,8-22 Using carefully
designed cationic iridium complexes, highly efficient
green,10,12,14,18,21 yellow,8,15,21,22 orange,13,14,20,21 and red10,21
LECs have been achieved, with the external quantum effi-
ciency (EQE) and power efficiency for green LECs app-
roaching 15% and 40 lm W-1, respectively.18 However,
the EQE and power efficiency of blue-green LECs, with
In recent years, light-emitting electrochemical cells (LECs)
based on ionic transition metal complexes (iTMCs) have
spurred much interest because of their great potential in
solid-state lighting applications.1-3 In addition to the
notable features of conventional polymer-based LECs
(single layer, air-stable cathodes, solution process, etc.),4
iTMC-based LECs have high electroluminescent (EL)
efficiency because of the phosphorescent nature of iTMCs.
For iTMC-based LECs, high brightness and efficiency
can be achieved at relatively low operating voltages as a
result of efficient carrier injection and balanced carrier
recombination in LECs.4-7
(9) Lowry, M. S.; Goldsmith, J. I.; Slinker, J. D.; Rohl, R.; Pascal,
R. A.; Malliaras, G. G.; Bernhard, S. Chem. Mater. 2005, 17, 5712.
(10) Tamayo, A. B.; Garon, S.; Sajoto, T.; Djurovich, P. I.; Tsyba, I. M.;
Bau, R.; Thompson, M. E. Inorg. Chem. 2005, 44, 8723.
(11) Nazeeruddin, M. K.; Wegh, R. T.; Zhou, Z.; Klein, C.; Wang, Q.;
€
De Angelis, F.; Fantacci, S.; Gratzel, M. Inorg. Chem. 2006, 45,
9245.
(12) Bolink, H. J.; Cappelli, L.; Coronado, E.; Parham., A.; Stossel., P.
€
Among all iTMCs, ionic iridium complexes are most
widely used because of their high luminescent efficiency
Chem. Mater. 2006, 18, 2778.
(13) Su, H.; Wu., C.; Fang., F.; Wong, K. Appl. Phys. Lett. 2006, 89,
261118.
(14) Su, H.; Fang, F.; Hwu, T.; Hsieh, H.; Chen, H.; Lee, G.; Peng, S.;
Wong, K.; Wu, C. Adv. Funct. Mater. 2007, 17, 1019.
(15) Bolink, H. J.; Cappelli, L.; Cheylan, S.; Coronado, E.; Costa,
*Corresponding author. Tel: (þ86)10-6277-1964 (Y.Q.); (þ86)10-6277-9988
(L.D.). E-mail: qiuy@mail.tsinghua.edu.cn (Y.Q); duanl@mail.tsinghua.edu.cn
(L.D).
ꢀ
R. D.; Lardies, N.; Nazeeruddin, M. K.; Ortı, E. J. Mater. Chem.
´
~
(1) Slinker, J. D.; Bernards, D.; Houston, P. L.; Abruna, H. D.;
2007, 17, 5032.
(16) Su, H.; Chen, H.; Fang, F.; Liu, C.; Wu, C.; Wong, K.; Liu, Y.;
Peng, S. J. Am. Chem. Soc. 2008, 130, 3414.
(17) He, L.; Duan, L.; Qiao, J.; Wang, R.; Wei, P.; Wang, L.; Qiu, Y.
Adv. Funct. Mater. 2008, 18, 2123.
ꢀ
(18) Bolink, H. J.; Coronado, E.; Costa, R. D.; Lardies, N.; Ortı, E.
´
Inorg. Chem. 2008, 47, 9149.
(19) Colman, E. Z.; Slinker, J. D.; Parker, J. B.; Malliaras, G. G.;
Bernhard, S. Chem. Mater. 2008, 20, 388.
(20) Rothe, C.; Chiang, C.; Jankus, V.; Abdullah, K.; Zeng, X.; Jitchati,
R.; Batsanov, A. S.; Bryce, M. R.; Monkman, A. P. Adv. Funct.
Mater. 2009, 19, 2038.
(21) He, L.; Qiao, J.; Duan, L.; Dong, G. F.; Zhang, D. Q.; Wang, L. D.;
Qiu, Y. Adv. Funct. Mater. 2009, 19, 2950.
´
(22) Costa, R. D.; Ortı, E.; Bolink, H. J.; Graber, S.; Schaffner, S.;
Bernhard, S.; Malliaras, G. G. Chem. Commun. 2003, 2392.
(2) Slinker, J. D.; Rivnay, J.; Moskowitz, J. S.; Parker, J. B.; Bernhard,
~
S.; Abruna, H. D.; Malliaras, G. G. J. Mater. Chem. 2007, 17, 2976.
(3) Ulbricht, C.; Beyer, B.; Friebe, C.; Winter, A.; Schubert, U. S. Adv.
Mater. 2009, 21, 4418.
(4) Pei, Q. B.; Yu, G.; Zhang, C.; Yang, Y.; Heeger, A. J. Science. 1995,
269, 1086.
(5) Slinker, J. D.; Defranco, J. A.; Jaqutth, M. J.; Silveir, W. R.;
~
Zhong, Y. W.; Moran-Mirabal, J. M.; Craighead, H. G.; Abruna,
H. D.; Marohn, J. A.; Malliaras, G. G. Nat. Mater. 2007, 6, 894.
(6) Pei, Q. B.; Heeger, A. J. Nat. Mater. 2008, 7, 167.
(7) Matyba, P; Maturova, K; Kemerink, M; Robinson, N. D.; Edman,
L. Nat. Mater. 2009, 8, 672.
(8) Slinker, J. D.; Gorodetsky, A. A.; Lowry, M. S.; Wang, J.; Parker.,
S.; Rohl, R.; Bernhard, S.; Malliaras, G. G. J. Am. Chem. Soc.
2004, 126, 2763.
Neuburger, M.; Housecroft, C. E.; Constable, E. C. Adv. Funct.
Mater. 2009, 19, 3456.
r
2010 American Chemical Society
Published on Web 05/10/2010
pubs.acs.org/cm