depend on multistep approaches involving highly function-
alized pyridines, or strong bases to lithiate the 5-azaindole
itself followed by electrophile trapping.5 The formal dipolar
cycloaddition reaction developed by our group6 has been
shown to be useful for the preparation of pyrroles,7 bipyr-
roles,8 indolizines,9 and indole alkaloid natural products.10
Herein, we report a two-step sequence for the synthesis of
5-azaindoles by oxidation of a tetrahydro-1H-pyrrolo[3,2-c]-
pyridine intermediate obtained through a cycloaddition
reaction between nitriles and a 3,4-cyclopropanopiperidine
(Scheme 1).11
Scheme 2. Attempted Synthesis of the Cyclopropanopiperidine
Scheme 1. Retrosynthetic Analysis
ethyl diazoacetate in the presence of Cu(TBS)2,14 the ethyl
cinnamate 5 was obtained in 60% yield and none of the
desired cyclopropane was observed. The cinnamate is likely
formed by carbene insertion at the benzylic position followed
by elimination. To avoid this undesired reaction a tosyl
protecting group was employed (Scheme 3),15 and cyclo-
This strategy allows access to a wide variety of C2
functionalized azaindoles simply by varying the starting
nitrile.
The synthesis of the cyclopropanopiperidine began with
benzyl protection of 4-piperidone 1 followed by acetalization
in acidic methanol (Scheme 2).12 Then the resulting acetal
3 was converted to enol ether 4 under standard conditions;13
however, when 4 was subjected to cyclopropanation with
Scheme 3. Access to Cyclopropanopiperidines
(4) (a) Evans, G. B.; Furneaux, R. H.; Hutchison, T. L.; Kezar, H. S.;
Morris, P. E., Jr.; Schramm, V. L.; Tyler, P. C. J. Org. Chem. 2001, 66,
5723–5730. (b) Zhu, J.; Wong, H.; Zhang, Z.; Yin, Z.; Meanwell, N. A.;
Kadow, J. F.; Wang, T. Tetrahedron Lett. 2006, 47, 5653–5656. (c) Roy,
P. J.; Dufresne, C.; Lachance, N.; Leclerc, J.-P.; Boisvert, M.; Wang, Z.;
Leblanc, Y. Synthesis 2005, 2751–2757. (d) Zhang, Z.; Yang, Z.; Meanwell,
N. A.; Kadow, J. F.; Wang, T. J. Org. Chem. 2002, 67, 2345–2347. (e)
Saab, F.; Be´ne´teau, V.; Schoentgen, F.; Me´rour, J.-Y.; Routier, S.
Tetrahedron 2010, 66, 102–110. (f) Zheng, X.; Kerr, M. A. Org. Lett. 2006,
8, 3777–3779.
propanation under the same conditions afforded the desired
cyclopropane 6 in 90% yield as an inconsequential 8:1
mixture of trans to cis diastereomers.16
With cyclopropane 6 in hand it was allowed to react with
acetonitrile under the standard annulation conditions (1.0
equiv of Me3SiOTf, -40 °C) to give the tetrahydropyrrolo-
pyridine 7a in 95% isolated yield (Scheme 4).7 This material
(5) (a) Fang, Y.-Q.; Yuen, J.; Lautens, M. J. Org. Chem. 2007, 72, 5152–
5160. (b) Roy, P.; Boisvert, M.; Leblanc, Y. Org. Synth. 2007, 84, 262–
271. (c) Lefoix, M.; Daillant, J.-P.; Routier, S.; Merour, J.-Y.; Gillaizeau,
I.; Coudert, G. Synthesis 2005, 20, 3581–3588. (d) Xu, L.; Lewis, I. R.;
Davidsen, S. K.; Summers, J. B. Tetrahedron Lett. 1998, 39, 5159–5162.
(e) Bisagni, E.; Ducrocq, C.; Civier, A. Tetrahedron 1976, 32, 1383–1390.
(f) Zhang, S.; Sun, X.; Zhang, W.-X.; Xi, Z. Chem.sEur. J. 2009, 15,
12608–12617. (g) Shaykoon, M. S. A.; Inagaki, F.; Mukai, C. Heterocycles
2010, 80, 133–139. (h) Whelligan, D. K.; Thomson, D. W.; Taylor, D.;
Hoelder, S. J. Org. Chem. 2010, 75, 11–15.
Scheme 4. Nitrile Annulation
(6) Yu, M.; Pagenkopf, B. L. J. Am. Chem. Soc. 2003, 125, 8122–8123.
(7) Yu, M.; Pagenkopf, B. L. Org. Lett. 2003, 5, 5099–5101.
(8) Yu, M.; Pantos, G. D.; Sessler, J. L.; Pagenkopf, B. L. Org. Lett.
2004, 6, 1057–1059.
(9) Morra, N. A.; Morales, C. L.; Bajtos, B.; Wang, X.; Jang, H.; Wang,
J.; Yu, M.; Pagenkopf, B. L. AdV. Synth. Catal. 2006, 348, 2385–2390.
(10) (a) Morales, C. L.; Pagenkopf, B. L. Org. Lett. 2008, 10, 157–
159. (b) Bajtos, B.; Pagenkopf, B. L. Eur. J. Org. Chem. 2009, 1072–
1077.
was easily and economically prepared on gram scale, and
was selected as a model substrate for screening oxidation
conditions to provide the desired azaindole nucleus (Table
(11) (a) Reissig, H.-U. Top. Curr. Chem. 1988, 144, 73–135. (b) Reissig,
H.-U.; Zimmer, R. Chem. ReV. 2003, 103, 1151–1196. (c) Yu, M.;
Pagenkopf, B. L. Tetrahedron 2005, 61, 321–347. (d) Carson, C. A.; Kerr,
M. A. Chem. Soc. ReV. 2009, 38, 3051–3060.
(12) Bridges, T. M.; Brady, A. E.; Kennedy, J. P.; Daniels, R. N.; Miller,
N. R.; Kim, K.; Breininger, M. L.; Gentry, P. R.; Brogan, J. T.; Jones,
C. K.; Conn, P. J.; Lindsley, C. W. Bioorg. Med. Chem. Lett. 2008, 18,
5439–5442.
(14) Charles, R. G. J. Org. Chem. 1957, 22, 677–679.
(15) Engler, T. A.; Wanner, J. J. Org. Chem. 2000, 65, 2444–2457.
(16) (a) Benzyl protecting group was first selected to allow for an easy
deprotection in the subsequent oxidation step. (b) Both diastereomers work
equally well in the subsequent cyclization.
(13) Gassman, P. G.; Burns, S. J. J. Org. Chem. 1988, 53, 5576–5578.
Org. Lett., Vol. 12, No. 14, 2010
3169