1,2,3-TRIAZOLO-PYRIMIDINES AS BUILDING BLOCKS
581
3
H-3,5), 7.80 (d, 2H, J 8.0, Ph H-2,6), 8.60 (s, 1H, pyrimidine), 11.22 (s, 1H, NH). MS
m/z: 243 (M+). Anal. requires for C11H9N5S (243.29) calcd./found: C, 54.30/54.14; H,
3.73/3.80; N, 28.79/28.62; S, 13.18/13.07.
3-(4-Nitrophenyl)-3,6-dihydro-7H-[1,2,3]triazolo[4,5-d]pyrimidine-7-
thione (4c). This compound was isolated as a white powdered solid, mp 277–278◦C
(ethanol–DMF) in 89% yield. 1H NMR ppm: δ 7.55 (d, 2H, 3J 8.4, C6H4 H-3,5), 8.61 (d,
2H, 3J 8.4, C6H4 H-2,6), 8.64 (s, 1H, pyrimidine), 11.30 (s, 1H, NH). MS m/z: 274 (M+).
Anal. requires for C10H6N6O2S (274.26) calcd./found: C, 43.79/43.64; H, 2.21/2.18; N,
30.64/30.49; S, 11.69/11.52.
N-Phenyl-2-[(3-phenyl-3H-[1,2,3]triazolo[4,5-d]pyrimidin-7-yl)sulfanyl]
acetamide (6)
To a solution of potassium hydroxide (560 mg, 10.0 mmol) and compound 4a (2.3
g, 10.0 mmol)) in ethanol (30 mL), 2-chloro-N-phenylacetamide 2 (1.7 g, 10.0 mmol) was
added. The reaction medium was cooled to room temperature. The solid was filtered and
recrystallized from the mixture of EtOH–DMF. This compound was isolated as a white
1
powdered solid, mp 195–196◦C (ethanol–DMF) in 95% yield. H NMR ppm: δ 7.03 (t,
3
3
3
1H, J 7.8, Ph H-4), 7.27 (t, 2H, J 7.8, Ph H-3,5), 7.54 (t, 1H, J 7.8, Ph H-4), 7.58 (d,
2H, 3J 7.8, Ph H-2,6), 7.66 (t, 2H, 3J 7.8, Ph H-3,5), 8.18 (d, 2H, 3J 7.8, Ph H-2,6) 8.95 (s,
1H, pyrimidine), 10.34 (s, 1H, NH). MS m/z: 362 (M+). Anal. requires for C18H14N6OS
(362.41) calcd./found: C, 59.65/59.48; H, 3.89/4.04; N, 23.19/23.14; S, 8.85/8.71.
REFERENCES
1. C. Adrie, A. Holzmann, W. M. Hirani, W. M. Zapol, and W. E. Hurford, Anesthesiology, 93, 422
(2000).
2. G. A. Piazza and R. Pamukcu, US Patent 6,200,980 (2001); Chem. Abstr., 134, 222726 (2001).
3. J. E. R. Borges, F. Fernandez, X. Garzia, A. R. Hergueta, C. Lopez, G. Andrei, R. Snoeck, M.
Witvrounw, J. Balzarini, and E. De Clercq, Nucleosides & Nucleotides, 17, 1237 (1998).
4. H.-D. Kummer, German Patent, 19,529,102 (1997); Chem. Abstr., 126, 152808 (1997).
5. M. Grifantini, P. Franchetti, L. Cappellacci, P. La Colla, A. G. Loi, and G. Piras, World Patent,
9,609,307 (1996); Chem. Abstr., 125, 87111 (1997).
6. L. M. Beauchamp, J. V. Tuttle, M. E. Rodriguez, and M. L. Sznaidman,J. Med. Chem., 39, 949
(1996).
7. L. Betti, G. Biagi, G. Giannaccini, I. Giorgi, O. Livi, A. Lucacchini, C. Manera, and V. Scartoni,
J. Med. Chem., 41, 668 (1998).
8. L. Betti, G. Biagi, G. Giannaccini, I. Giorgi, O. Livi, A. Lucacchini, C. Manera, and V. Scartoni,
Eur. J. Med. Chem., 34, 867 (1999).
9. G. Biagi, I. Giorgi, O. Livi, A. Nardi, F. Pacchini, V. Scartoni, and A. Lucacchini, Eur. J. Med.
Chem., 38, 983 (2003).
10. G. Biagi, I. Giorgi, O. Livi, V. Scartoni, and P. L. Barili, Farmaco, 58, 551 (2003).
11. J. C. Bussolari and R. P. Panzica, Bioorg. Med. Chem., 7, 2373 (1999).
12. L. Havlicek, K. Fuksova, V. Krystof, M. Orsag, B. Vojtesek, and M. Strnad, Bioorg. Med. Chem.,
13, 5399 (2005).
13. G. L’abbe, K. Vercauteren, and W. Dehaen, Bull. Soc. Chim. Belg., 103, 321 (1994).
14. R. S. Schreiber (Ed.), Organic Syntheses: Annual Publication of Satisfactory Methods for the
Preparation of Organic Chemicals (Wiley, New York, 1951), vol. 31, p. 14.
15. H. Bredereck and H. Baumann, Liebigs Ann. Chem., 701, 143 (1967).