the case of the mimetic the final concentration was 250 mM and for
p53 it was 200 mM. In each case the amount of DMSO added was
less than 5% of the total volume of the protein. Fig. ESI 2a and b
show the HSQC spectra in the absence and presence of p53 and
mimetic respectively whilst Fig. ESI 3 illustrates the shift changes
by residue.† Large shifts were defined as greater than 0.3 ppm,
medium as between 0.3 to 0.09 and weak shifts those below 0.09.
15 L. T. Vassilev, B. T. Vu, B. Graves, D. Carvajal, F. Podlaski, Z. Filipovic,
N. Kong, U. Kammlott, C. Lukacs, C. Klein, N. Fotouhi and E. A. Liu,
Science, 2004, 303, 844–848.
16 B. L. Grasberger, T. Lu, C. Schubert, D. J. Parks, T. E. Carver,
H. K. Koblish, M. D. Cummings, L. V. LaFrance, K. L. Milkiewicz,
R. R. Calvo, D. Maguire, J. Lattanze, C. F. Franks, S. Zhao, K.
Ramachandren, G. R. Bylebyl, M. Zhang, C. L. Manthey, E. C. Petrella,
M. W. Pantoliano, I. C. Deckman, J. C. Spurlino, A. C. Maroney, B. E.
Tomczuk, C. J. Molloy and R. F. Bone, J. Med. Chem., 2005, 48, 909–
912.
17 I. R. Hardcastle, S. U. Ahmed, H. Atkins, G. Farnie, B. T. Golding,
R. J. Griffin, S. Guyenne, C. Hutton, P. Ka¨llblad, S. J. Kemp, M. S.
Kitching, D. R. Newell, S. Norbedo, J. S. Northen, R. J. Reid, K.
Saravanan, H. M. G. Willems and J. Lunec, J. Med. Chem., 2006, 49,
6209–6221.
18 S. Shangary, D. Qin, D. McEachern, M. Liu, R. S. Miller, S. Qiu, Z.
Nikolovska-Coleska, K. Ding, G. Wang, J. Chen, D. Bernard, J. Zhang,
Y. Lu, Q. Gu, R. B. Shah, K. J. Pienta, X. Ling, S. Kang, M. Guo, Y.
Sun, D. Yang and S. Wang, Proc. Natl. Acad. Sci. U. S. A., 2008, 105,
3933–3938.
(6)
To compare the changes seen in the HSQC we also mapped the
shifts in a-carbons between the NMR structure of the apo protein
(PDBID: 1Z1M) with both the crystal structures of bound p53
(1YCR) and nutlin (1RV1). The structures were overlaid with the
least squares function in COOT66 and the distances between each
carbon were calculated (eqn (7))
19 E. A. Harker, D. S. Daniels, D. A. Guarracino and A. Schepartz, Bioorg.
Med. Chem., 2009, 17, 2038–2046.
20 O. M. Stephens, S. Kim, B. D. Welch, M. E. Hodsdon, M. S. Kay and
A. Schepartz, J. Am. Chem. Soc., 2005, 127, 13126–12127.
21 J. A. Kritzer, J. D. Lear, M. E. Hodsdon and A. Schepartz, J. Am.
Chem. Soc., 2004, 126, 9468–9469.
(7)
22 J. D. Sadowsky, W. D. Fairlie, E. B. Hadley, H.-S. Lee, N. Umezawa,
Z. Nikolovska-Coleska, S. Wang, D. C. S. Huang, Y. Tomita and S. H.
Gellman, J. Am. Chem. Soc., 2007, 129, 139–154.
23 W. S. Horne, M. D. Boersma, M. A. Windsor and S. H. Gellman,
Angew. Chem., Int. Ed., 2008, 47, 2853–2856.
The positional changes were separated into three groups (Large,
Medium, and Small) and mapped to the structure of hDM2 in a
similar manner as for the HSQC shifts.
24 E. F. Lee, J. D. Sadowsky, B. J. Smith, P. E. Czabotar, K. J. Peterson-
Kaufman, P. M. Colman, S. H. Gellman and W. D. Fairlie, Angew.
Chem., Int. Ed., 2009, 48, 4318–4322.
Acknowledgements
25 T. Hara, S. R. Durell, M. C. Myers and D. H. Appella, J. Am. Chem.
Soc., 2006, 128, 1995–2004.
26 C. M. Goodman, S. Choi, S. Shandler and W. F. DeGrado, Nat. Chem.
Biol., 2007, 3, 252–262.
This work was supported by the Engineering and Physical Sciences
Research Council [EP/D077842/1 and EP/G022569/1] and The
European Research Council [240342]
27 R. Fasan, R. L. A. Dias, K. Moehle, O. Zerbe, D. Obrecht, P. R. E.
Mittl, M. G. Gru¨ttner and J. A. Robinson, ChemBioChem, 2006, 7,
515–526.
28 S. Kneissl, E. J. Loveridge, C. Williams, M. P. Crump and R. K.
Allemann, ChemBioChem, 2008, 9, 3046–3054.
Notes and references
1 T. Berg, Angew. Chem., Int. Ed., 2003, 42, 2462–2481.
2 H. Yin and A. D. Hamilton, Angew. Chem., Int. Ed., 2005, 44, 4130–
4163.
3 J. A. Wells and C. L. McLendon, Nature, 2007, 450, 1001–1009.
4 A. J. Wilson, Chem. Soc. Rev., 2009, 38, 3289–3300.
5 J. M. Davis, L. K. Tsou and A. D. Hamilton, Chem. Soc. Rev., 2007,
36, 326–334.
6 M. Sattler, H. Liang, D. Nettesheim, R. P. Meadows, J. E. Harlan, M.
Eberstadt, H. S. Yoon, S. B. Shuker, B. S. Chang, A. J. Minn, C. B.
Thompson and S. W. Fesik, Science, 1997, 275, 983–986.
7 G. Lessene, P. E. Czabotar and P. M. Colman, Nat. Rev. Drug Discovery,
2008, 7, 989–1000.
8 P. H. Kussie, S. Gorina, V. Marechal, B. Elenbaas, J. Moreau, A. J.
Levine and N. P. Pavletich, Science, 1996, 274, 948–953.
9 S. Patel and M. R. Player, Expert Opin. Invest. Drugs, 2008, 17, 1865–
1882.
29 L. D. Walensky, A. L. Kung, I. Escher, T. J. Malia, S. Barbuto, R. D.
Wright, G. Wagner, G. L. Verdine and S. J. Korsmeyer, Science, 2004,
305, 1466–1470.
30 D. Wang, W. Liao and P. S. Arora, Angew. Chem., Int. Ed., 2005, 44,
6525–6529.
31 R. Hayashi, D. Wang, T. Hara, J. A. Iera, S. R. Durell and D. H.
Appella, Bioorg. Med. Chem., 2009, 17, 7884–7893.
32 B. P. Orner, J. T. Ernst and A. D. Hamilton, J. Am. Chem. Soc., 2001,
123, 5382–5383.
33 O. Kutzki, H. S. Park, J. T. Ernst, B. P. Orner, H. Yin and A. D.
Hamilton, J. Am. Chem. Soc., 2002, 124, 11838–11839.
34 J. T. Ernst, J. Becerril, H. S. Park, H. Yin and A. D. Hamilton, Angew.
Chem., Int. Ed., 2003, 42, 535–550.
35 J. M. Davis, A. Truong and A. D. Hamilton, Org. Lett., 2005, 7,
5405.
10 J. K. Murray and S. H. Gellman, Peptide Science, 2007, 88, 657–686.
11 T. Oltersdorf, S. W. Elmore, A. R. Shoemaker, R. C. Armstrong, D. J.
Augeri, B. A. Belli, M. Bruncko, T. L. Deckwerth, J. Dinges, P. J.
Hajduk, M. K. Joseph, S. Kitada, S. J. Korsmeyer, A. R. Kunzer, A.
Letai, C. Li, M. J. Mitten, D. G. Nettesheim, S.-C. Ng, P. M. Nimmer,
J. M. O’Connor, A. Oleksijew, A. M. Petros, J. C. Reed, W. Shen, S. K.
Tahir, C. B. Thompson, K. J. Tomaselli, B. Wang, M. D. Wendt, H.
Zhang, S. W. Fesik and S. H. Rosenberg, Nature, 2005, 435, 677–681.
12 A. Degterev, A. Lugovskoy, M. Cardone, B. Mulley, G. Wagner, T.
Mitchison and J. Y. Yuan, Nat. Cell Biol., 2001, 3, 173–182.
13 J.-L. Wang, D. Liu, Z.-J. Zhang, S. Shan, X. Han, S. M. Srinivasula,
C. M. Croce and E. S. Alnemri, Proc. Natl. Acad. Sci. U. S. A., 2000,
97, 7124–7129.
36 H. Yin, G.-i. Lee, K. A. Sedey, J. M. Rodriguez, H.-G. Wang, S. M.
Sebti and A. D. Hamilton, J. Am. Chem. Soc., 2005, 127, 5463–5468.
37 H. Yin, G.-I. Lee, K. A. Sedey, O. Kutzki, H. S. Park, B. P. Orner, J. T.
Ernst, H.-G. Wang, S. M. Sebti and A. D. Hamilton, J. Am. Chem.
Soc., 2005, 127, 10191–10196.
38 H. Yin, G.-I. Lee, H. S. Park, G. A. Payne, J. M. Rodriguez, S. M. Sebti
and A. D. Hamilton, Angew. Chem., Int. Ed., 2005, 44, 2704–2707.
39 I. C. Kim and A. D. Hamilton, Org. Lett., 2006, 8, 1751–1754.
40 J. Becerril and A. D. Hamilton, Angew. Chem., Int. Ed., 2007, 46, 4471–
4473.
41 S. M. Biros, L. Moisan, E. Mann, A. Carella, D. Zhai, J. C. Reid and J.
Rebek, Bioorg. Med. Chem. Lett., 2007, 17, 4641–4645.
42 J. M. Rodriguez and A. D. Hamilton, Angew. Chem., Int. Ed., 2007, 46,
8614–8617.
14 M. Nguyen, R. C. Marcellus, A. Roulston, M. Watson, L. Serfass, S. R.
Murthy-Madiraju, D. Goulet, J. Viallet, L. Belec, X. Billot, S. Acoca, E.
Purisima, A. Wiegmans, L. Cluse, R. W. Johnstone, P. Beauparlant and
G. C. Shore, Proc. Natl. Acad. Sci. U. S. A., 2007, 104, 19512–19517.
43 I. Saraogi, C. D. Incarvito and A. D. Hamilton, Angew. Chem., Int.
Ed., 2008, 47, 9691–9694.
44 P. Maity and B. Ko¨nig, Org. Lett., 2008, 10, 1473–1476.
2350 | Org. Biomol. Chem., 2010, 8, 2344–2351
This journal is
The Royal Society of Chemistry 2010
©