JOURNAL OF POLYMER SCIENCE: PART A: POLYMER CHEMISTRY DOI 10.1002/POLA
FIGURE 4 (a) Emission spectrum of a freshly prepared opal from sample S4 (copolymer CP1b). (b) Wavelength dependence of the
emission lifetime for the same sample.
13, 421–425; (b) Lange, B.; Metz, N.; Tahir, M. N.; Fleischhaker,
separated by more than 140 nm. Therefore, because emis-
F.; Theato, P.; Schroder, H.-C.; Muller, W. E. G.; Tremel, W.;
¨
¨
sion does not take place in the pseudogap spectral region,
the crystal does not seem to have any effect on the photonic
crystal emission intensity or lifetime.
Zentel, R. Macromol Rapid Commun 2007, 28, 1987–1994; (c)
Texter, J. CR Chim 2003, 6, 1425–1433.
4 Egen, M.; Zentel, R. Chem Mater 2002, 14, 2176–2183.
CONCLUSIONS
5 (a) Goodwin, J. W.; Hearn, J.; Ho, C. C.; Ottewill, R. H. Col-
loid Polym Sci 1974, 252, 464–471; (b) Egen, M.; Zentel, R.
Macromol Chem Phys 2004, 205, 1479–1488; (c) Mouaziz, H.;
Larsson, A.; Sherrington, D. C. Macromolecules 2004, 37,
1319–1323.
In this article, we have described the copolymerization of
highly fluorescent first- and second-generation PPV dendrons
with MMA by SFEP. The copolymers are obtained as mono-
disperse colloidal suspensions of microspheres with smooth
surfaces. The fluorescent dendrons are chemically bonded to
the polymer main chain, and their emission properties are
preserved. Artificial photonic crystals were synthesized using
these copolymers; however, the emission is not affected by
the opal structure because of the difference between the
pseudogaps of the opals and the emission wavelength. Inves-
tigations are currently underway aimed at obtaining pho-
tonic crystals with a periodicity that matches the emission
band of the dendrons.
6 (a) Lodahl, P.; van Driel, A. F.; Nikolaev, I. S.; Irman, A.; Over-
gaag, K.; Vanmaekelbergh, D.; Vos, W. L. Nature 2004, 430,
654–657; (b) Blanco, A.; Lo´ pez, C.; Mayoral, R.; Mı´guez, H.;
Meseguer, F.; Mifsud, A.; Herrero, J. Appl Phys Lett 1998, 73,
1781–1783; (c) Noda, S.; Fujita, M.; Asano, T. Nat Photonics
2007, 1, 449–458.
7 (a) Kopp, V. I.; Fan, B.; Vithana, H. K. M.; Genack, A. Z.
Opt Lett 1998, 23, 1707–1709; (b) Loncar, M.; Yoshie, T.;
Scherer, A.; Gogna, P.; Qiu, Y. Appl Phys Lett 2002, 81,
2680–2682.
This work was funded by the Ministerio de Ciencia e In-
novacio´n, Spain—projects CSD2006-0019 (Nanolight.es),
MAT2006-09062, and CTQ2006-08871 (co-funded by FEDER,
European Union) and the Junta de Comunidades de Castilla-La
Mancha—project PCI08-0033.
8 Romanov, S. G.; Maka, T.; Sotomayor Torres, C. M.; Muller,
¨
M.; Zentel, R. Appl Phys Lett 1999, 75, 1057–1059.
9 (a) Kim, K.; Webster, S.; Levi, N.; Carroll, D. L.; Pinto, M. R.;
Schanze, K. S. Langmuir 2005, 21, 5207–5211; (b) Han, M. G.;
Foulger, S. H. Chem Commun 2004, 2154–2155.
10 (a) Fleischhaker, F.; Zentel, R. Chem Mater 2005, 17,
1346–1351; (b) Onodera, T.; Nakamura, M.; Takaya, Y.; Masu-
hara, A.; Wakayama, Y.; Nemoto, N.; Nakanishi, H.; Oikawa, H.
J Phys Chem C 2009, 113, 11647–11651.
REFERENCES AND NOTES
1 (a) Lange, B.; Fleischhaker, F.; Zentel, R. Macromol Rapid
Commun 2007, 28, 1291–1311; (b) Lo´ pez, C. Adv Mater 2003,
15, 1679–1704.
11 Garc´ıa-Mart´ınez, J. C.; D´ıez-Barra, E.; Rodr´ıguez-Lo´ pez, J.
Curr Org Synth 2008, 5, 267–290.
2 M´ıguez, H.; Lo´ pez, C.; Meseguer, F.; Blanco, A.; Va´zquez, L.;
Mayoral, R.; Ocan˜ a, M.; Forne´s, V.; Mifsud, A. Appl Phys Lett
1997, 71, 1148–1150.
12 (a) Burn, P. L.; Lo, S.-C.; Samuel, I. D. W. Adv Mater 2007,
19, 1675–1688; (b) Lo, S.-C.; Burn, P. L. Chem Rev 2007, 107,
1097–1116.
3 (a) Edrington, A. C.; Urbas, A. M.; DeRege, P.; Chen, C. X.;
Swager, T. M.; Hadjichristidis, N.; Xenidou, M.; Fetters, L. J.;
Joannopoulos, J. D.; Fink, Y.; Thomas, E. L. Adv Mater 2001,
13 (a) Li, M.; Wang, J.; Feng, L.; Wang, B.; Jia, X.; Jiang, L.;
Song, Y.; Zhu, D. Colloids Surf A 2006, 290, 233–238; (b) Jin,
2664
INTERSCIENCE.WILEY.COM/JOURNAL/JPOLA