J. Zhang et al. / European Journal of Medicinal Chemistry 45 (2010) 2798e2805
2805
Organic layers were combined, extracted with brine (3 ꢁ 30 mL),
dried over Na2SO4 and solvent was removed. The crude material
was crystallized from AcOEt/PE to afford (26) (2.64þg, 64%) as
a white solid. mp 172e175 ꢂC; EI-MS(m/z): 473.2 ([M] ), 1H NMR
cocrystal structure. Here molecule docking was performed using
the Sybyl/FlexX (Tripos Inc.) based on the crystal structures of
VEGFR-2 and bFGFR-1 taken from the Protein Data Bank. Hydro-
gens were added and minimized using the Tripos force field and
Pullman charges. Model compounds were constructed with the
Sybyl/Sketch module (Tripos Inc.) and optimized using Powell's
method with the Tripos force field with convergence criterion set at
(300 MHz, CDCl3)
d
ppm 2.14e2.35 (m, 6H), 2.63 (d, J ¼ 4.2 Hz, 3H),
2.76 (d, J ¼ 4.3 Hz, 3H), 3.61e3.65 (m, 4H),3.86 (s, 3H), 3.92 (s, 3H),
4.11e4.15 (m, 2H), 6.84 (d, J ¼ 8.4 Hz, 1H), 6.89 (d, J ¼ 8.5 Hz, 1H),
7.14 (d, J ¼ 8.4 Hz, 1H), 7.38 (d, J ¼ 8.8 Hz, 1H).
ꢀ
}
0.05 kcal/(A mol), and assigned with the Gasteiger-Huckel method
ꢀ
Compound (8) was prepared in the same way.
[25]. The residues in a radius of 6.5 A around BIBF 1120 (the ligand
of VEGFR-2 in the crystal structure 3C7Q) in VEGFR-2, and C4F (the
ligand of bFGFR-1 in the crystal structure 3C4F) in bFGFR-1 were
selected as the active site. Other docking parameters implied in the
program were kept at default. Virtual docking of VEGFR-2 and
bFGFR-1 in complex with the inhibitors provided a basis for further
studies aimed at identifying inhibitors of VEGF- and bFGF-induced
angiogenesis, and valuable information for structure-based design
of second generation inhibitors.
5.2.12.1. 6-{2-[(3-Chloro-4-fluorophenyl)amino]-2-oxoethoxy}-60-
hydroxy-5,50-dimethoxy-N,N0- dimethylbiphenyl-2,20-dicarboxamide
(25). Yield, 76%, white crystalline powder, mp 159e162 ꢂC; EI-MS
(m/z): 545.1 ([M]þ), 1H NMR (300 MHz, CDCl3)
d ppm 2.63 (s, 3H),
2.84 (s, 3H), 3.83 (s, 3H), 3.91 (s, 3H), 4.59 (s, 1H), 4.64(s, 1H), 5.72
(br, 1H), 6.33(br, 1H), 6.72 (d, J ¼ 7.8 Hz, 1H), 6.95 (d, J ¼ 7.9 Hz, 1H),
7.08 (d, J ¼ 8.7 Hz, 1H), 7.26e7.29 (m, 3H), 8.00 (d, J ¼ 6.3 Hz, 1H),
8.92 (s, 1H).
5.2.13. 6-{2-[(3-Chloro-4-fluorophenyl)amino]-2-oxoethoxy}-5,50-
dimethoxy-N,N0-dimethyl-60- (2-morpholin-4-ylethoxy)biphenyl-
2,20-dicarboxamide (27)
Acknowledgments
This work was supported by the National Natural Science
Foundation (NNSF) of China (Grant Number 30901839 and
30730110). We also thank Prof. Wenfang Xu and Huawei Zhu for the
pharmacophore modeling and molecular docking study. We are
grateful to Prof. Zongru Guo for practical guidance during the
course of the project.
To a suspension of (25) (0.30 g, 0.55 mmol) in dehydrated
alcohol (50 mL) were added anhydrous potassium carbonate
(0.46 g, 3.3 mmol) and N-(2-chloroethyl)morpholine hydrochloride
(0.21 g, 1.1 mmol). The mixture was refluxed for 8 h. Filtration and
evaporation of alcohol was done in a vacuum. The residue was
extrated with EtOAc (2 ꢁ 30 mL). The combined organic layers were
washed with H2O (3 ꢁ10 mL), 2 M NaOH (3 ꢁ 10 mL), 2 M HCl
(3 ꢁ 10 mL) and brine (2 ꢁ 10 mL), dried over Na2SO4, and
concentrated to give (27) (0.25 g, 72%) as a white crystalline
powder, mp 165e167 ꢂC; EI-MS(m/z): 658.1 ([M]þ), 1H NMR
References
[1] J. Folkman, Nat. Med. 1 (1995) 27e30.
[2] D. Hanahan, J. Folkman, Cell 86 (1996) 353e364.
[3] Y.P. Li, L.C. He, Chin. Sci. Bull. 52 (2007) 410e415.
[4] G.P. Perdue, R.N. Blomster, D.A. Blake, N.R. Farnsworth, J. Pharm. Sci. 68 (1979)
124e126.
[5] J. Zhao, L. Zhao, W. Chen, L.C. He, X. Li, Biomed. Pharmacother. 62 (2008)
383e389.
[6] Y.M. Zhang, L.C. He, Y.L. Zhou, Phytomedicine 15 (2008) 112e119.
[7] J.M. Rollinger, D. Schuster, E. Baier, E.P. Ellmerer, T. Langer, H. Stuppner, J. Nat.
Prod. 69 (2006) 1341e1346.
(300 MHz, CDCl3)
d
ppm 2.18e2.33 (m, 6H), 2.62 (d, J ¼ 3.8 Hz, 3H),
2.82 (d, J ¼ 3.7 Hz, 3H), 3.62e3.67 (m, 4H), 3.80 (s, 3H), 3.89 (s, 3H),
3.97e4.02 (m, 2H), 4.69 (s, 1H), 4.73 (s, 1H), 6.79 (d, J ¼ 8.5 Hz, 1H),
6.90 (d, J ¼ 8.2 Hz, 1H), 7.11 (d, J ¼ 8.4 Hz, 2H), 7.67e7.72 (m, 3H),
8.04 (d, J ¼ 8.2 Hz, 2H).
Compound (10) was prepared in the same way.
[8] A. Trapani, J. Sitterberg, U. Bakowsky, T. Kissel, Int. J. Pharm. 375 (2009)
97e106.
[9] M.L. Scarpati, A. Bianco, R. Lo Scalzo, Synth. Commun. 21 (1991) 849e858.
[10] N.J. Richmond, C.A. Abrams, P.R. Wolohan, E. Abrahamian, P. Willett, R.D. Clark,
J. Comput. Aided. Mol. Des. 20 (2006) 567e587.
[11] B.M. Trost, W. Tang, F.D. Toste, J. Am. Chem. Soc. 127 (2005) 14785e14803.
[12] P. Baret, C. Beguin, D. Gaude, G. Gellon, C. Mourral, J.L. Pierre, G. Serratrice,
A. Favier, Tetrahedron 50 (1994) 2077e2094.
[13] E.C. Burger, J.A. Tunge, Org. Lett. 6 (2004) 4113e4115.
[14] T.R. Kelly, R.L. Xie, J. Org. Chem. 63 (1998) 8045e8048.
[15] K. Khanbabaee, M. Gro
ber, Tetrahedron 58 (2002) 1159e1163.
[16] S. Quideau, L. Pouysegu, M. Oxoby, M.A. Looney, Tetrahedron 57 (2001)
319e329.
5.2.13.1. 6-{2-[(3-Chloro-4-fluorophenyl)amino]-2-oxoethoxy}-3,30-dime-
tIhoxy-N,N0-dimethyl-60- (2-morpholin-4-ylethoxy)biphenyl-2,20-dicarbox-
1
amide (28). Yield, 59%, mp 138e141 ꢂC; EI-MS(m/z): 617.1 ([M]þ), H
NMR (300 MHz, CDCl3)
d
ppm 2.38 (s, 6H), 2.67 (d, J ¼ 4.2 Hz, 3H), 2.72
(t, J ¼ 6.3 Hz, 2H), 2.88(d, J ¼ 3.9 Hz, 3H), 3.84 (s, 3H), 3.92 (s, 3H), 4.14 (t,
J ¼ 6.0 Hz, 2H), 4.72 (s, 1H), 4.75 (s, 1H), 6.84 (d, J ¼ 8.2 Hz, 1H), 6.92 (d,
J ¼ 8.1 Hz, 1H), 7.13 (d, J ¼ 8.5 Hz, 2H), 7.69e7.74 (m, 3H), 8.01 (d,
J ¼ 8.3 Hz, 2H).
5.2.13.2. 6-{2-[(3-Chloro-4-fluorophenyl)amino]-2-oxoethoxy}-5,50-
dimethoxy-N,N0-dimethyl-60-(2-piperazin-1-ylethoxy)biphenyl-2,20-
dicarboxamide (29). Yield, 54%, mp 192e195 ꢂC; EI-MS(m/z): 657.1
[17] P. Knesl, D. Röseling, U. Jordis, Molecules 11 (2006) 286e297.
[18] A. Bermejo, I. Andreu, F. Suvire, S. Leonce, D.H. Caignard, P. Renard, A. Pierre,
R.D. Enriz, D. Cortes, N. Cabedo, J. Med. Chem. 45 (2002) 5058e5068.
[19] J.Q. Wang, M. Gao, K.D. Miller, G.W. Sledge, Q.H. Zheng, Bioorg. Med. Chem.
Lett. 16 (2006) 4102e4106.
([M]þ), 1H NMR (300 MHz, CDCl3)
d ppm 2.54e2.67 (m, 6H), 2.78 (s,
3H), 3.07(s, 3H), 3.42e3.57 (m, 4H), 3.78 (s, 3H), 3.91 (s, 3H), 4.57 (s,
1H), 4.62(s, 1H), 6.80 (d, J ¼ 8.3 Hz, 1H), 6.98 (d, J ¼ 8.0 Hz, 1H), 7.06
(d, J ¼ 8.8 Hz, 2H), 7.43 (d, J ¼ 8.3 Hz, 2H), 7.91e7.99 (m, 3H).
[20] B.D. Palmer, W.R. Wilson, G.J. Atwell, D. Schultz, X.Z. Xu, W.A. Denny, J. Med.
Chem. 37 (1994) 2175e2184.
[21] P.J. Montoya-Pelaez, Y.S. Uh, C. Lata, M.P. Thompson, R.P. Lemieux,
C.M. Crudden, J. Org. Chem. 71 (2006) 5921e5929.
[22] S. Svenson, D.H. Thompson, J. Org. Chem. 63 (1998) 7180e7182.
[23] Y. Wu, Y.Q. Yang, Q. Hu, J. Org. Chem. 69 (2004) 3990e3992.
[24] I. Naruse, T. Ohmori, Y. Ao, H. Fukumoto, T. Kuroki, M. Mori, N. Saijo, K. Nishio,
Int. J. Cancer 98 (2002) 310e315.
5.3. Molecular modeling
Molecular docking method was often applied to predict the
binding conformation of ligand when there was no available
[25] J. Mou, H. Fang, F. Jing, Q. Wang, Y. Liu, H. Zhu, W. Xu, Bioorg. Med. Chem. 17
(2009) 4666e4673.