3466
Z. Pei et al. / Bioorg. Med. Chem. 18 (2010) 3457–3466
6. Matsumoto, Y.; Murai, M.; Fujita, D.; Sakamoto, K.; Miyoshi, H.; Yoshida, M.;
Mogi, T. J. Biol. Chem. 2006, 281, 1905.
7. Swem, L. R.; Gong, X.; Yu, C. A.; Bauer, C. E. J. Biol. Chem. 2006, 281, 6768.
8. Beyer, R. E.; SeguraAguilar, J.; DiBernardo, S.; Cavazzoni, M.; Fato, R.; Fiorentini,
D.; Galli, M. C.; Setti, M.; Landi, L.; Lenaz, G. Proc. Natl. Acad. Sci. U.S.A. 1996, 93,
2528.
9. Yeh, J. I.; Chinte, U.; Du, S. C. Proc. Natl. Acad. Sci. U.S.A. 2008, 105, 3280.
10. Lummen, P. Biochim. Biophys. Acta 1998, 1364, 287.
11. Hollingworth, R. M.; Ahammadsahib, K. I.; Gadelhak, G.; McLaughlin, J. L.
Biochem. Soc. Trans. 1994, 22, 230.
12. Rutherford, A. W.; Krieger-Liszkay, A. Trends. Biochem. Sci. 2001, 26, 648.
13. Sherer, T. B.; Richardson, J. R.; Testa, C. M.; Seo, B. B.; Panov, A. V.; Yagi, T.;
Matsuno-Yagi, A.; Miller, G. W.; Greenamyre, J. T. J. Neurochem. 2007, 100,
1469.
14. Jung, K.; Reszka, R. Adv. Drug Delivery Rev. 2001, 49, 87.
15. Wong, T. W. L.; Yu, H. Y.; Kong, S. K.; Fung, K. P.; Kwok, T. T. Life Sci. 2000, 67,
l1111.
16. Ohkura, K.; Lee, J. D.; Shimizu, H.; Nakano, A.; Uzui, H.; Horikoshi, M.;
Fujibayashi, Y.; Yonekura, Y.; Ueda, T. Mol. Cell. Biochem. 2003, 248, 203.
17. Li, R. B.; Bianchet, M. A.; Talalay, P.; Amzel, L. M. Proc. Natl. Acad. Sci. U.S.A. 1995,
92, 8846.
18. Yu, C. A.; Gu, L. Q.; Yu, L. Biochem. Biophys. Res. Commun. 1982, 105, 624.
19. Lee, G. Y.; He, D. Y.; Yu, L.; Yu, C. A. J. Biol. Chem. 1995, 270, 6193.
20. Shenoy, S. K.; Yu, L.; Yu, C. A. J. Biol. Chem. 1997, 272, 17867.
21. Yang, X. D.; Yu, L.; He, D. Y.; Yu, C. A. J. Biol. Chem. 1998, 273, 31916.
22. Yu, L.; Yang, F. D.; Yu, C. A. J. Biol. Chem. 1985, 260, 963.
23. Heinrich, H.; Werner, S. Biochemistry 1992, 31, 11413.
24. Gong, X.; Xie, T.; Yu, L.; Hesterberg, M.; Scheide, D.; Friedrich, T.; Yu, C. A. J. Biol.
Chem. 2003, 278, 25731.
25. Murai, M.; Sekiguchi, K.; Nishioka, T.; Miyoshi, H. Biochemistry 2009, 48, 688.
26. Sekiguchi, K.; Murai, M.; Miyoshi, H. Biochim. Biophys. Acta 2009, 1787, 1106.
27. Gu, L. Q.; Yu, L.; Yu, C. A. Biochem. Biophys. Res. Commun. 1983, 113, 477.
28. Sakamoto, K.; Nomura, K.; Miyoshi, H. J. Pestic. Sci. 2002, 27, 147.
29. Malen, C.; Lacoste, J.; Rue, B. Fr. Demande. 1992, 41.
30. Liu, B.; Gu, L.; Zhang, J. Recl. Trav. Chim. Pays-Bas 1991, 110, 104.
31. Finley, K. T.. In The Chemistry of Quinoid Compounds; Wiley, 1988; Vol. 2, pp
608–609.
was extracted after each different time point of illumination. The
samples were kept on ice in the dark until the entire series was col-
lected. The enzyme activity was measured as described in Section
3.5.1, within 1 h after illumination. Each reaction contained 10
of illuminated enzyme.
lL
The Complex II sample (5
and when applicable from 10 to 75
nones, in a total volume of 500 L 50 mM potassium phosphate
l
M purified Complex II in detergent,
lM of the different azidoqui-
l
buffer with 1 mM EDTA, pH 7.4) was placed on a concave glass
plate mounted in an ice bath, at a distance of 7 cm from the mid-
wavelength UV light source. A 100 lL sample was extracted at each
illumination time point in the series. The samples were kept on ice
in the dark until the entire series was collected. The enzyme activ-
ity was measured within 1 h after illumination as described in Sec-
tion 3.5.2, using Q1 as primary electron acceptor.
Labeling of Complex I containing R. capsulatus membranes was
performed in a quartz cuvette with a 5 mm light path. Cytoplasmic
membranes were diluted in Buffer A to 1 mg/mL protein and pre-
incubated with about 20 lM of the photoactive substrate for
5 min in the dark before illumination. The samples were illumi-
nated with mid-wavelength UV light for up to 10 min at a 7 cm dis-
tance from the light source (UVM-57). The samples were kept at
4 °C throughout the procedure. NADH:quinone reductase activity
was measured immediately after illumination at 340 nm
(e
NADH = 6.22 mMÀ1 cmÀ1) and 25 °C in 50 mM Tris–Cl, pH 8.0,
10 mM KCl, 5 mM MgCl2, 0.2
l
g/mL gramicidin, 5 mM KCN, in
the presence of 100
l
M Q1 and 150 M NADH.
l
Acknowledgments
32. Silbert, L. S.; Swern, D. J. Am. Chem. Soc. 1959, 81, 2364.
33. Varma, R. S.; Kumar, D. Catal. Lett. 1998, 53, 225.
34. Monsef-Mirzal, P.; McWhinne, W. R. Inorg. Chem. Acta 1981, 52, 211.
35. Leyva, E.; Munoz, D.; Platz, M. S. J. Org. Chem. 1989, 54, 5938.
36. Grandori, R.; Carey, J. Trends Biochem. Sci. 1994, 19, 72.
37. Carey, J.; Brynda, J.; Wolfova, J.; Grandori, R.; Gustavsson, T.; Ettrich, R.;
Smatanova, I. K. Protein Sci. 2007, 16, 2301.
38. Patridge, E. V.; Ferry, J. G. J. Bacteriol. 2006, 188, 3498.
39. Hägerhäll, C.; Aasa, R.; von Wachenfeldt, C.; Hederstedt, L. Biochemistry 1992,
31, 7411.
We thank Jannette Carey for supplying purified WrbA. This
work was supported by Grants to C.H. from the Crafoord founda-
tion and Carl Tryggers Foundation and to T.F. from the Swedish Re-
search Council. R.R. acknowledges a scholarship from the Sven and
Lilly Lawski foundation. T.G. is funded by The Research School in
Pharmaceutical Science, FLÄK.
40. Lemma, E.; Hägerhäll, C.; Geisler, V.; Brandt, U.; von Jagow, G.; Kröger, A.
Biochim. Biophys. Acta 1991, 1059, 281.
Supplementary data
41. Dupuis, A.; Chevallet, M.; Darrouzet, E.; Duborjal, H.; Lunardi, J.; Issartel, J. P.
Biochim. Biophys. Acta 1998, 1364, 147.
42. Grivennikova, V. G.; Roth, R.; Zakharova, N. V.; Hägerhäll, C.; Vinogradov, A. D.
Biochim. Biophys. Acta 2003, 1607, 79.
43. Magnitsky, S.; Toulokhonova, L.; Yano, T.; Sled, V. D.; Hägerhäll, C.;
Grivennikova, V. G.; Burbaev, D. S.; Vinogradov, A. D.; Ohnishi, T. J. Bioenerg.
Biomembr. 2002, 34, 193.
44. Esposti, M. D.; Ghelli, A. Biochem. Soc. Trans. 1999, 27, 606.
45. Leif, H.; Sled, V. D.; Ohnishi, T.; Weiss, H.; Friedrich, T. Eur. J. Biochem. 1995, 230,
538.
Supplementary data (HRMS of azido-Q0 (compound 3) post-illu-
mination, with a tentative assignment of the main products
formed. 1H, 13C, NMR spectra, and HRMS of the novel compounds
6 and 8) associated with this article can be found, in the online ver-
46. Grandori, R.; Khalifah, P.; Boice, J. A.; Fairman, R.; Giovanielli, K.; Carey, J. J. Biol.
Chem. 1998, 273, 20960.
References and notes
47. Sakamoto, K.; Miyoshi, H.; Ohshima, M.; Kuwabara, K.; Kano, K.; Akagi, T.;
Mogi, T.; Iwamura, H. Biochemistry 1998, 37, 15106.
1. Darrouzet, E.; Moser, C. C.; Dutton, P. L.; Daldal, F. Trends Biochem. Sci. 2001, 26,
445.
2. Osyczka, A.; Moser, C. C.; Daldal, F.; Dutton, P. L. Nature 2004, 427, 607.
3. Tocilescu, M. A.; Fendel, U.; Zwicker, K.; Kerscher, S.; Brandt, U. J. Biol. Chem.
2007, 282, 29514.
4. Hägerhäll, C. Biochim. Biophys. Acta 1997, 1320, 107.
5. Abramson, J.; Riistama, S.; Larsson, G.; Jasaitis, A.; Svensson-Ek, M.; Laakkonen,
L.; Puustinen, A.; Iwata, S.; Wikström, M. Nat. Struct. Biol. 2000, 7, 910.
48. Friedrich, T.; Brors, B.; Hellwig, P.; Kintscher, L.; Rasmussen, T.; Scheide, D.;
Schulte, U.; Mänele, W.; Weiss, H. Biochim. Biophys. Acta 2000, 1459, 305.
49. Rappsilber, J.; Ishihama, Y.; Mann, M. Anal. Chem. 2003, 75, 663.
50. Hägerhäll, C.; Friden, H.; Aasa, R.; Hederstedt, L. Biochemistry 1995, 34,
11080.
51. Weaver, P. F.; Wall, J. D.; Gest, H. Arch. Microbiol. 1975, 105, 207.
52. Herter, S. M.; Schiltz, E.; Drews, G. Eur. J. Biochem. 1997, 246, 800.