pubs.acs.org/joc
alcohols promoted by cinchona alkaloids in both catalytic4
Synthesis of both Enantiomers of Hemiesters by
Enantioselective Methanolysis of Meso Cyclic
Anhydrides Catalyzed by r-Amino Acid-Derived
Chiral Thioureas†
or stoichiometric proportions5 have been described. Homo-
geneous6 or heterogeneous supported cinchona derivatives7
and some other amines8 have also been used in that trans-
formation. A good level of enantioselectivity is also obtained
in enzyme-catalyzed9 enantioselective desymmetrization of
anhydrides. Some of those protocols are of limited applica-
tion because of the need of high catalyst loading, long
reaction times, or low reaction temperature.
ꢀ
ꢀ
ꢀ
Ruben Manzano, Jose M. Andres,
ꢀ
Marıa-Dolores Muruzabal, and Rafael Pedrosa*
´
Instituto CINQUIMA and Departamento de Quımica
Recently, excellent yields and ee values have been obtained in
desymmetrization of meso anhydrides by methanolysis10 or
thiolysis11 by using bifunctional sulfonamides derived from
cinchona alkaloids. Interestingly, chiral ureas and thioureas
have been extensively employed as organocatalysts,12 but their
use for desymmetrization of meso anhydrides is scarcely re-
ported. Only a few bifunctional thioureas have been recently
described as excellent organocatalysts for these desymmetriza-
tions. The number of structures of these catalysts is limited
because the chiral environment is provided by quinine, dihydro-
quinine,13 or chiral 2,3-diaminopropanol derivatives.14
ꢀ
Organica, Facultad de Ciencias, Universidad de Valladolid,
Dr. Mergelina s/n, 47011-Valladolid, Spain
Received June 11, 2010
It has been shown that quinidine-derived catalyst is less
enantioselective and efficient than the quinine analogue, but
quinine and quinidine derivatives do not behave as pseudo-
enantiomers in this reaction. Consequently, only one enantiomer
of the final hemiester was obtained in the reactions catalyzed by
thioureas derived from these alkaloids. To circumvent this
problem and obtain both enantiomers, a three-step procedure
Both ureas and thioureas derived from L- or D-valine act
as bifunctional organocatalysts able to induce the enan-
tioselective alcoholysis of mono-, bi-, and tricyclic meso
anhydrides. The desymmetrization occurs in near quan-
titative yields and excellent enantiomeric ratios (up to
>99:<1) under low catalyst loading. Both enantiomers
of the hemiesters can be directly obtained by changing the
configuration of the catalyst.
(4) (a) Hiratake, J.; Yamamoto, Y.; Oda, J. J. Chem. Soc., Chem. Commun.
1985, 1717. (b) Hiratake, J.; Inagaki, M.; Yamamoto, Y.; Oda, J. J. Chem. Soc.,
Perkin Trans. I 1987, 1053. (c) Aitken, R. A.; Gopal, J.; Hirst, J. A. J. Chem. Soc.,
Chem. Commun. 1988, 632. (d) Aitken, R. A.; Gopal, J. Tetrahedron: Asymmetry
1990, 1, 517. (e) Bolm, C.; Schiffers, I.; Dinter, C. L.; Gerlach, A. J. Org. Chem.
2000, 65, 6984.
€
(5) (a) Tanyeli, C.; Ozc-ubukc-u, S. Tetrahedron: Asymmetry 2003, 14,
1167. (b) Bolm, C.; Schiffers, I.; Atodiresei, I.; Hackenberger, C. P. R. Tetra-
hedron: Asymmetry 2003, 14, 3455. (c) Bolm, C.; Atodiresei, I.; Schiffers, I.
Org. Synth. 2005, 82, 120. (d) Ishii, Y.; Fujimoto, R.; Mikami, M.; Murakami, S.;
Enantioselective desymmetrization by alcoholysis of meso
anhydrides is one of the most simple methods to access chiral
building blocks with either single or multiple stereocenters.1
This reaction has attracted considerable attention, and
different methodologies have been developed to get desym-
metrization of meso cyclic dicarboxylic anhydrides.2 To
this end, diastereoselective desymmetrizations with chiral
alcohols,3 and enantioselective transformations with achiral
ꢁ ꢀ
Miki, Y.; Furukawa, Y. Org. Process Res. Dev. 2007, 11, 609. (e) Ivsic, T.;
ꢁ
Hamersak, Z. Tetrahedron: Asymmetry 2009, 20, 1095.
(6) Chen, Y.; Tian, S.-K.; Deng, L. J. Am. Chem. Soc. 2000, 122, 9542.
(7) (a) Bigi, F.; Carloni, S.; Maggi, R.; Mazzacani, A.; Sartori, G.; Tanzi,
G. J. Mol. Catal. A: Chem. 2002, 182-183, 533. (b) Song, Y.-M.; Choi, J. S.;
Yang, J. W.; Han, H. Tetrahedron Lett. 2004, 45, 3301. (c) Kim, H. S.; Song,
Y.-M.; Choi, J. S.; Yang, J. W.; Han, H. Tetrahedron 2004, 60, 12051.
(8) (a) Uozumi, Y.; Yasoshima, K.; Miyachi, T.; Nagai, S.-I. Tetrahedron
Lett. 2001, 42, 411. (b) Okamatsu, T.; Irie, R.; Katsuki, T. Synlett 2007, 1569.
(9) (a) Yamamoto, K.; Nishioka, T.; Oda, J. Tetrahedron Lett. 1988, 29,
1717. (b) Ozegowski, R.; Kunath, A.; Schick, H. Tetrahedron: Asymmetry 1993,
4, 695. (c) Fryszkowska, A.; Frelek, J.; Ostaszewski, R. Tetrahedron 2005, 61,
6064. (d) Fryszkowska, A.; Komar, M.; Koszelewski, D.; Ostaszewski, R.
Tetrahedron: Asymmetry 2005, 16, 2475. (e) Fryszkowska, A.; Komar, M.;
Koszelewski, D.; Ostaszewski, R. Tetrahedron: Asymmetry 2006, 17, 961.
(10) (a) Oh, S. H.; Rho, H. S.; Lee, J. W.; Lee, J. E.; Youk, S. H.; Chin, J.;
Song, C. E. Angew. Chem., Int. Ed. 2008, 47, 7872. (b) Youk, S. H.; Oh, S. H.;
Rho, H. S.; Lee, J. E.; Lee, J. W.; Song, C. E. Chem. Commun. 2009, 2220.
(11) Honjo, T.; Sano, S.; Shiro, M.; Nagao, Y. Angew. Chem., Int. Ed.
2005, 44, 5838.
†
ꢀ
Dedicated to Professor Jose Barluenga on the occasion of his 70th birthday.
(1) (a) Bernardi, A.; Arosio, D.; Dellavecchia, D.; Micheli, F. Tetrahe-
dron: Asymmetry 1999, 10, 3403. (b) Starr, J. T.; Koch, G.; Carreira, E. M. J.
Am. Chem. Soc. 2000, 122, 8793. (c) Choi, C.; Tian, S.-K.; Deng, L. Synthesis
ꢁ
2001, 1737. (d) Hamersak, Z.; Stipetic, I.; Avdagic, A. Tetrahedron: Asym-
metry 2007, 18, 1481. (e) Rome, D.; Johansson, M.; Sterner, O. Tetrahedron
ꢀ
ꢀ
€
Lett. 2007, 48, 635. (f) Huang, J.; Xiong, F.; Chen, F.-E. Tetrahedron:
Asymmetry 2008, 19, 1436.
(2) For reviews on that topic see: (a) Spivey, A. C.; Andrews, B. I. Angew.
Chem., Int. Ed. 2001, 40, 3131. (b) Chen, Y.; McDaid, P.; Deng, L. Chem.
Rev. 2003, 103, 2965. (c) Tian, S.-K.; Chen, Y.; Hang, J.; Tang, L.; McDaid,
P.; Deng, L. Acc. Chem. Res. 2004, 37, 621. (d) Atodiresei, I.; Schiffers, I.;
Bolm, C. Chem. Rev. 2007, 107, 5683.
(3) (a) Theisen, P. D.; Heathcock, C. H. J. Org. Chem. 1993, 58, 142. (b)
Kraft, P.; Cadalbert, R. Synthesis 1998, 1662. (c) Gourdel-Martin, M.-E.;
Comoy, C.; Huet, F. Tetrahedron: Asymmetry 1999, 10, 403. (d) Dai, W. M.;
Yeung, K. K. Y.; Chow, C. W.; Williams, I. D. Tetrahedron: Asymmetry
2001, 12, 1603.
(12) For recent reviews on this topic see: (a) Schreiner, P. R. Chem. Soc.
Rev. 2003, 32, 289. (b) Takemoto, Y. Org. Biomol. Chem. 2005, 3, 4299.
(c) Akiyama, T.; Itoh, J.; Fuchibe, K. Adv. Synth. Catal. 2006, 348, 999.
(d) Taylor, M. S.; Jacobsen, E. N. Angew. Chem., Int. Ed. 2006, 45, 1520.
(e) Connon, S. J. Chem.;Eur. J. 2006, 12, 5418. (f) Takemoto, Y.; Miyabe,
H. Chimia 2007, 61, 269. (g) Doyle, A. G.; Jacobsen, E. N. Chem. Rev. 2007,
107, 5713. (h) Sohtome, Y.; Nagasawa, K. Synlett 2010, 1.
(13) Peschiulli, A.; Quigley, C.; Tallon, S.; Gun’ko, Y. K.; Connon, S. J.
J. Org. Chem. 2008, 73, 6409.
(14) Wang, S.-X.; Chen, F.-E. Adv. Synth. Catal. 2009, 351, 547.
DOI: 10.1021/jo100792r
r
Published on Web 06/30/2010
J. Org. Chem. 2010, 75, 5417–5420 5417
2010 American Chemical Society