Please do not adjust margins
ChemComm
Page 4 of 4
COMMUNICATION
Journal Name
reduction of the exocyclic double bond of 3aa would produce the
corresponding product 7 in 74% yield. The reaction of 3aa with vinyl
magnesium bromide afforded the multifused lactone 8 in 75% yield
via the tandem 1,2-addition/lactonization.
2017, 139, 10188−10191.
DOI: 10.1039/D0CC01118E
5. For intermolecular spiroannulation, see: (a) L. Yang, H. Zheng, L.
Luo, J. Nan, J. Liu, Y. Wang and X. Luan, J. Am. Chem. Soc. 2015,
137, 4876−4879; (b) H. Zheng, L. Bai, J. Liu, J. Nan, Z. Zuo, L. Yang,
Y. Wang and X. Luan, Chem. Commun. 2015, 51, 3061−3064; (c)
Z. Zuo, J. Wang, J. Liu, Y. Wang and X. Luan, Angew. Chem. Int.
Ed. 2020, 59, 653 –657.
6. For selected recent reviews on synthesis of spirocycles, see: (a)
P.-W. Xu, J.-S. Yu, C. Chen, Z.-Y. Cao, F. Zhou and J. Zhou, ACS
Catal. 2019, 9, 1820−1882; (b) E. M. Carreira and T. C. Fessard,
Chem. Rev. 2014, 114, 8257−8322.
7. (a) C. Cheng and J. F. Hartwig, Chem. Rev. 2015, 115, 8946; (b) G.
Song and X. Li, Acc. Chem. Res. 2015, 48, 1007; (c) K. Shin, H. Kim
and S. Chang, Acc. Chem. Res. 2015, 48, 1040; (d) J. He, M. Wasa,
K. S. L. Chan, Q. Shao and J.-Q. Yu, Chem. Rev. 2017, 117,
8754−8786.
Based on the above results and previously reported work, a
proposed mechanistic pathway accounting for this
transformation was illustrated in Scheme 5. The gold(I) carbene
intermediate IA, which was formed from o-alkynylaryl α-
diazoesters 1 with the gold catalyst, would react with the
nucleophilic naphthols 2 or phenols 5 to afford ortho- or para-
selective C-H bond functionalization product IB. The following
5-exo-dig carbocyclization of naphthols or phenols onto the
terminal alkynes activated by gold catalyst afforded the alkenyl
gold intermediate IC. Finally, IC underwent the following
deprotonation and protodeauration to produce the target
spiroannulation products 3 or 6.
8. For [3+2] dearomatization of 2-naphthol derivatives, see: J.
Zheng, S.-B. Wang, C. Zheng and S.-L. You, J. Am. Chem. Soc.
2015, 137, 4880−4883; (b) C. Zheng, J. Zheng and S.-L. You, ACS
Catal. 2016, 6, 262 −271; (c) G. Duarah, P. P. Kaishap, B. Sarma
and S. Gogoi, Chem. - Eur. J. 2018, 24, 10196−10200; (d) I. Khan,
S. R. Chidipudiab and H. W. Lam, Chem. Commun. 2015, 51,
2613−2616; (e) J. Nan, Z. Zuo, L. Luo, L. Bai, H. Zheng, Y. Yuan, J.
Liu, X. Luan and Y. Wang, J. Am. Chem. Soc., 2013, 135, 17306-
17039; (f) L. Han, H. Wang and X. Luan, Org. Chem. Front. 2018,
5, 2453−2457. For [3+2] dearomatization of phenol derivatives,
see: (g) A. Seoane, N. Casanova, N. Quiñones, J. L. Mascareñas
and M. Gulías J. Am. Chem. Soc. 2014, 136, 7607−7610; (h) P.-P.
Lin, X.-L. Han, G.-H. Ye, J.-L. Li, Q. Li and H. Wang, J. Org. Chem.
2019, 84, 12966−12974; (i) S. Kujawa, D. Best, D. J. Burns and H.
W. Lam, Chem. - Eur. J. 2014, 20, 8599 − 8602. For [2+2+1]
dearomatization of 2-naphthol, see: (j) S. Gu, L. Luo, J. Liu, L. Bai,
H. Zheng, Y. Wang and X. Luan, Org. Lett. 2014, 16, 6132−6135.
9. For reviews on gold-catalyzed transformation of diazo
compounds, see: (a) L. Liu and J. Zhang, Chem. Soc. Rev. 2016,
45, 506; (b) F. Wei, C. Song, Y. Ma, L. Zhou, C.-H. Tung and Z. Xu,
Sci. Bull. 2015, 60, 1479; (c) M. R. Fructos, M. M. Díaz-Requejo
and P. J. Pérez, Chem. Commun. 2016, 52, 7326; (d) B. Ma, L. Liu
and J. Zhang, Asian J. Org. Chem. 2018, 7, 2015-2025.
10. For reviews, see: (a) M. P. Doyle, R. Duffy, M. Ratnikov and L.
Zhou, Chem. Rev. 2010, 110, 704; (b) M. M. Díaz-Requejo and P.
J. Pérez, Chem. Rev. 2008, 108, 3379; (c) A. Ford, H. Miel, A. Ring,
C. N. Slattery, A. R. Maguire and M. A. McKervey, Chem. Rev.
2015, 115, 9981; (d) L. Liu and J. Zhang, Chin. J. Org. Chem. 2017,
37, 1117-1126. For examples of our group, see: (e) Z. Yu, B. Ma,
M. Chen, H.-H. Wu, L. Liu and J. Zhang, J. Am. Chem. Soc. 2014,
136, 6904; (f) B. Ma, Z. Chu, B. Huang, Z. Liu, L. Liu and J. Zhang,
Angew. Chem. Int. Ed. 2017, 56, 2749; (g) Y. Liu, Z. Yu, J. Z. Zhang,
L. Liu, F. Xia and J. Zhang, Chem. Sci. 2016, 7, 1988; (h) Z. Yu, Y.
Li, P. Zhang, L. Liu, and J. Zhang, Chem. Sci. 2019, 10, 6553-6559;
(i) Z. Yu, H. Qiu, L. Liu and J. Zhang, Chem. Commun., 2016, 52,
2257; (j) B. Ma, Z. Wu, B. Huang, L. Liu and J. Zhang, Chem.
Commun. 2016, 52, 9351; (k) B. Ma, J. Wu, L. Liu and J. Zhang,
Chem. Commun. 2017, 53, 10164-10167.
To conclude, we have developed a conceptually simple, but
highly unusual protocol for achieving dearomatization of readily
available phenols and naphthols. Upon treatment with gold
complex, highly chemo- and site-selective C−H bond
functionalization of phenols and naphthols with o-alkynylaryl α-
diazoesters occur, delivering the alkynyl phenol derivatives
which can undergo the following carbocyclisation
dearomatization reaction. This protocol provides
a
straightforward access to diverse highly complex three-
dimensional spirocyclic molecules in good to excellent yields
with high chemo-, regio-selectivity and good diastereo-
selectivity. Moreover, this work will broaden the application of
diazo compounds in organic synthesis and open a new door for
the design of dearomatization of arenes.
We are grateful to the NSFC (Nos. 21971066, 21772042), the
STCSM (18JC1412300) for financial support.
Notes and references
1. Synthetic and Natural Phenols, ed. J. H. P. Tyman, Elsevier, 1996.
2. For selected books and reviews, see: Reviews: (a) Asymmetric
Dearomatization Reactions, ed. S.-L. You, Wiley-VCH, Weinheim,
Germany, 2016; (b) A. R. Pape, K. P. Kaliappan and E. P. Kündig,
Chem. Rev. 2000, 100, 2917−2940; (c) S. P. Roche and J. Porco,
Jr., Angew. Chem. Int. Ed. 2011, 50, 4068; (d) C. Zheng and S.-L.
You, Chem 2016, 1, 830.
3. For selected reviews of dearomatization of phenols and
naphthols, see: (a) H. Wang and X. Luan, Org. Biomol. Chem.
2016, 14, 9451−9455; (b) W.-T. Wu, L. Zhang and S.-L. You, Chem.
Soc. Rev. 2016, 45, 1570−1580; (c) W. Sun, G. Li, L. Hong and R.
Wang, Org. Biomol. Chem. 2016, 14, 2164−2176.
4. For selected examples of intramolecular dearomatizaion of
phenols and naphthols to construct spirocycles, see: (a) T.
Nemoto, Y. Ishige, M. Yoshida, Y. Kohno, and Y. Hamada, Org.
Lett. 2010, 12, 5020-5023; (b) S. Rousseaux, J. García-Fortanet,
M. A. Del Aguila Sanchez and S. L. Buchwald, J. Am. Chem. Soc.
2011, 133, 9282−9285; (c) Q.‐F. Wu, W.‐B. Liu, C.‐X. Zhuo, Z.‐Q.
Rong, K. ‐Y. Ye and S. ‐L. You, Angew. Chem., Int. Ed. 2011, 50,
4455 −4458; (d) R.-Q. Xu, Q. Gu, W.-T. Wu, Z.-A. Zhao and S.-L.
You, J. Am. Chem. Soc. 2014, 136, 15469 − 15472; (e) H.
11. (a) W.-T. Wu, R.-Q. Xu, L. Zhang and S.-L. You, Chem. Sci., 2016,
7, 3427; For reviews, see: (b) W.-T. Wu, L. Zhang, S.-L. You, Acta
Chim. Sinica 2017, 75, 419—438.
12. CCDC 1915415 (3aa), CCDC 1915417 (3aa’), CCDC 1915418 (3aq)
13. T. Oguma and T. Katsuki, J. Am. Chem. Soc. 2012, 134,
20017−20020.
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins