Iron-Catalyzed Carbon–Carbon Single-Bond Cleavage
Eur. J. 2005, 11, 1086–1092; f) J. Legros, C. Bolm, Angew.
Chem. 2004, 116, 4321–4324; Angew. Chem. Int. Ed. 2004, 43,
4225–4228; g) J. Legros, C. Bolm, Angew. Chem. 2003, 115,
5645–5647; Angew. Chem. Int. Ed. 2003, 42, 5487–5489; h) Z.
Li, L. Cao, C.-J. Li, Angew. Chem. 2007, 119, 6625–6627; An-
gew. Chem. Int. Ed. 2007, 46, 6505–6507; i) Z. Li, R. Yu, H.
Li, Angew. Chem. 2008, 120, 7607–7610; Angew. Chem. Int. Ed.
2008, 47, 7497–7500.
a) C. P. Casey, H. Guan, J. Am. Chem. Soc. 2007, 129, 5816–
5817; b) R. M. Bullock, Angew. Chem. 2007, 119, 7504–7507;
Angew. Chem. Int. Ed. 2007, 46, 7360–7363; c) S. Gaillard, J.-
L. Renaud, ChemSusChem 2008, 1, 505–509; d) S. Enthaler, B.
Hagemann, G. Erre, K. Junge, M. Beller, Chem. Asian J. 2006,
1, 598–604; e) S. C. Bart, E. Lobkovsky, P. J. Chirik, J. Am.
Chem. Soc. 2004, 126, 13794–13807.
a) H. Nishiyama, A. Furuta, Chem. Commun. 2007, 760–762;
b) N. S. Shaikh, S. Enthaler, K. Junge, M. Beller, Angew. Chem.
2008, 120, 2531–2535; Angew. Chem. Int. Ed. 2008, 47, 2497–
2501; c) A. M. Tondreau, E. Lobkovsky, P. J. Chirik, Org. Lett.
2008, 10, 2789–2792; d) F. G. Gelalcha, B. Bitterlich, G. Anilk-
umar, M. K. Tse, M. Beller, Angew. Chem. 2007, 119, 7431–
7435; Angew. Chem. Int. Ed. 2007, 46, 7293–7296; e) N. S.
Shaikh, K. Junge, M. Beller, Org. Lett. 2007, 9, 5429–5432; f)
A. Furuta, H. Nishiyama, Tetrahedron Lett. 2007, 48, 110–113.
G. Zhang, Q. Liu, L. Shi, J. Wang, Tetrahedron 2008, 64, 339–
344.
a) C. M. Chu, W. J. Huang, C. Lu, P. Wu, J. T. Liu, C. F. Yao,
Tetrahedron Lett. 2006, 47, 7375–7380; b) M. Kawatsura, Y.
Komatsu, M. Yamamoto, S. Hayase, T. Itoh, Tetrahedron Lett.
2007, 48, 6480–6482; c) J. Christoffers, Chem. Commun. 1997,
943–944; J. Christoffers, J. Chem. Soc. Perkin Trans. 1 1997,
3141–3149.
For general reviews on iron catalysis, see: a) A. Correa, O. G.
Mancheno, C. Bolm, Chem. Soc. Rev. 2008, 37, 1108–1117; b)
S. Enthaler, K. Junge, M. Beller, Angew. Chem. 2008, 120,
3363–3367; Angew. Chem. Int. Ed. 2008, 47, 3317–3321.
For recent papers on iron catalysis, see: a) T. Hatakeyama, M.
Nakamura, J. Am. Chem. Soc. 2007, 129, 9844–9845; b) Z. Li,
L. Cao, C. J. Li, Angew. Chem. 2007, 119, 6625–6627; Angew.
Chem. Int. Ed. 2007, 46, 6505–6507; c) Z. Li, R. Yu, H. Li,
Angew. Chem. 2008, 120, 7607–7610; Angew. Chem. Int. Ed.
2008, 47, 7497–7500; d) C. M. Rao Volla, P. Vogel, Angew.
Chem. 2008, 120, 1325–1327; Angew. Chem. Int. Ed. 2008, 47,
1305–1307; e) S. K. Xiang, L. H. Zhanga, N. Jiao, Chem. Com-
mun. 2009, 6487–6489; f) C. C. Kofink, B. Blank, S. Pagano,
N. Gçtz, P. Knochel, Chem. Commun. 2007, 1954–1956; g) I.
Sapountzis, W. Lin, C. Kofink, C. Despotopoulou, P. Knochel,
Angew. Chem. 2005, 117, 1682–1685; Angew. Chem. Int. Ed.
2005, 44, 1654–1657; h) P. Knochel, I. Sapountzis, T. Korn, W.
Lin, C. Kofink, Ger. Offen. DE102004049508, 2006; i) G. Cah-
iez, S. Marquais, Tetrahedron Lett. 1996, 37, 1773–1776; j) G.
Cahiez, S. Marquais, Pure Appl. Chem. 1996, 68, 53–60.
For iron-catalyzed reactions reported by the group of Bolm,
see: a) J. Legros, C. Bolm, Angew. Chem. 2003, 115, 5645–5647;
Angew. Chem. Int. Ed. 2003, 42, 5487–5489; b) J. Legros, C.
Bolm, Angew. Chem. Int. Ed. 2004, 43, 4225–4228.
a) For a review on iron-catalyzed carbon–heteroatom bond-
formation reactions, see: A. Correa, O. G. Mancheño, C. Bolm,
Chem. Soc. Rev. 2008, 37, 1108–1117; b) A. Correa, M. Carril,
C. Bolm, Angew. Chem. Int. Ed. 2008, 47, 2880–2883; c) O.
Bistri, A. Correa, C. Bolm, Angew. Chem. Int. Ed. 2008, 47,
586–588; d) A. Correa, M. Carril, C. Bolm, Chem. Eur. J. 2008,
14, 10919–10922; e) A. Correa, S. Elmore, C. Bolm, Chem. Eur.
J. 2008, 14, 3527–3529; f) for iron-catalyzed carbon–hetero-
atom bond formation contaminated by copper, see: S. L. Buch-
wald, C. Bolm, Angew. Chem. Int. Ed. 2009, 48, 5586–5587.
a) For a review on iron-catalyzed oxidative coupling, see:
A. A. O. Sarhan, C. Bolm, Chem. Soc. Rev. 2009, 38, 2730–
2744; b) K. Wang, M. Lü, A. Yu, X. Zhu, Q. Wang, J. Org.
Chem. 2009, 74, 935–938.
Conclusions
In summary, we have demonstrated a novel and efficient
iron-salt-catalyzed carbon–carbon bond cleavage[29] of 1,3-
diektones, which occurs through a retro-Claisen condensa-
tion reaction. This protocol provides a simple and conve-
nient strategy for the efficient synthesis of structurally di-
verse esters or substituted methyl ketones. Moreover, tan-
dem carbon–carbon bond formation (through substitution
or Michael addition) followed by carbon–carbon bond
cleavage in one pot has also been demonstrated. Notably,
the use of less expensive and environmentally friendly iron
salts makes this protocol very attractive, and it can be useful
for large-scale applications.
[4]
[5]
Experimental Section
Representative Experimental Procedure for the Synthesis of Phen-
ethyl Acetate (3a): A 5-mL screw-cap vial was charged with acetyl-
acetone (100 mg, 1.0 mmol) and phenethyl alcohol (122 mg,
1.0 mmol). To this mixture was added Fe(OTf)3 (25 mg,
0.05 mmol), and the reaction mixture was stirred vigorously with a
small magnet at 80 °C for 10 h, keeping the cap of the vial tightly
closed. The progress of the reaction was followed by TLC. The
reaction mixture was allowed to attain room temperature and was
then taken up in ethyl acetate (50 mL). This mixture was washed
with water (20 mL) followed by brine solution (20 mL), and the
organic phase was dried with anhydrous Na2SO4. The solvent was
removed under reduced pressure, and the product was purified by
silica gel column chromatography (5% ethyl acetate in petroleum
spirit) to afford 3a (161 mg, 0.98 mmol, 98%) as a yellowish liquid.
[6]
[7]
[8]
1H NMR (300 MHz, CDCl3): δ = 2.04 (s, 3 H), 2.94 (t, J = 7.1 Hz, [9]
2 H), 4.29 (t, J = 7.1 Hz, 2 H), 7.21–7.34 (m, 5 H) ppm.
Supporting Information (see footnote on the first page of this arti-
cle): Experimental details and spectroscopic data of all compounds.
Acknowledgments
We are pleased to acknowledge the financial and infrastructural
assistance from the UGC-CAS Programme of the Department of
Chemistry, Jadavpur University. S.B. and S.M. are also thankful to
the University Grants Commission (UGC), New Delhi, India and
Jadavpur University, respectively, for their fellowships.
[10]
[1] For a general review on iron catalysis, see: a) A. Correa, O. G.
Mancheño, C. Bolm, Chem. Soc. Rev. 2008, 37, 1108–1117; b)
S. Enthaler, K. Junge, M. Beller, Angew. Chem. 2008, 120,
3363–3367; Angew. Chem. Int. Ed. 2008, 47, 3317–3321; c) C.
Bolm, J. Legros, J. Le Paih, L. Zani, Chem. Rev. 2004, 104,
6217–6254; d) A. Fürstner, R. Martin, Chem. Lett. 2005, 624–
629; e) B. D. Sherry, A. Fürstner, Acc. Chem. Res. 2008, 41,
1500–1511; f) B. Plietker (Ed.), Iron Catalysis in Organic Chem-
istry, 2008 Wiley-VCH, Weinheim.
[2] a) M. Tamura, J. K. Kochi, J. Am. Chem. Soc. 1971, 93, 1487–
1489; b) M. Tamura, J. K. Kochi, Synthesis 1971, 303–305.
[3] a) M. Nakanishi, C. Bolm, Adv. Synth. Catal. 2007, 349, 861–
864; b) W. D. Kerber, B. Ramdhanie, D. P. Goldberg, Angew.
Chem. 2007, 119, 3792–3795; Angew. Chem. Int. Ed. 2007, 46,
3718–3721; c) F. Shi, M. K. Tse, Z. Li, M. Beller, Chem. Eur.
J. 2008, 14, 8793–8797; d) C. Pavan, J. Legros, C. Bolm, Adv.
Synth. Catal. 2005, 347, 703–705; e) J. Legros, C. Bolm, Chem.
[11]
[12]
Eur. J. Org. Chem. 2010, 2861–2866
© 2010 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjoc.org
2865