Please do not adjust margins
ChemComm
Page 4 of 5
COMMUNICATION
Journal Name
W.-J. Xiao, J. Am. Chem. Soc., 2017, 1D3O9,I: 6103.;10(3d9)/DF.0-CDC. 0L5u1,6D7E.
Liu, L. Zhu, L.-Q. Lu, Q. Yang, Q.-Q. Zhou, Y. Wei, Y. Lan, W.-J.
Xiao, J. Am. Chem. Soc., 2019, 141, 6167; (e) K. Zhang, L.-Q.
Lu, Y. Jia, Y. Wang, F.-D. Lu, F. Pan, W.-J. Xiao, Angew. Chem.
Int. Ed., 2019, 58, 13375.
out to generate a piperidine skeleton, which is an important
aza-heterocyclic moiety in alkaloids, pharmaceuticals and
agrochemicals.19 For example,
a
reductive cyclization
promoted by Raney Ni under a H2 atmosphere followed by
protection can afforded piperidine product 10a in 78% yield
(Scheme 5c, up); complete hydrolysis of the nitrile to the
10 M. S. Taylor, D. N. Zalatan, A. M. Lerchner, E. N. Jacobsen, J.
Am. Chem. Soc., 2005, 127, 1313, and references therein.
11 (a) G. Fumagalli, S. Stanton, J. F. Bower, Chem. Rev., 2017,
117, 9404; (b) L. Liu, J. Am. Chem. Soc., 2006, 128, 5348; (c) S.
Ogoshi, M. Nagata, H. Kurosawa, J. Am. Chem. Soc., 2006,
128, 5350; (d) Y. Sumida, H. Yorimitsu, K. Oshima, J. Org.
Chem., 2009, 74, 3196; (e) T. Tamaki, M. Ohashi, S. Ogoshi,
Angew. Chem. Int. Ed., 2011, 50, 12067.
12 Ph-PTZ can absorb purple light (ab. 390-420 nm) to reach its
exited state (E1/2[Ph-PTZ·+/Ph-PTZ*] = -1.97 V vs SCE); please
see: X.-C. Pan, C. Fang, M. Fantin, N. Malhotra, W. Y. So, L. A.
Peteanu, A. A. Isse, A. Gennaro, P. Liu, J. Am. Chem. Soc.,
2016, 138, 2411. The oxidative potential of cyclopropyl
ketone 6i in the presence of La (OTf)3 was determined to be -
1.10 V (vs -2.08 V in the absence of La(OTf)3). The quantum
yield of reaction was determined to be 0.055. Please see the
details in Supporting Information.
amide followed by
a
BF3-promoted intramolecular
condensation gave the dihydropyridin-2(1H)-one product 10b
in 69% yield (Scheme 5c, bottom).
In summary, a synergistic triple catalyst system has been
developed for the ring-opening cyanation of cyclopropyl
ketones. The combination of organo-photoredox catalysis with
Lewis acid catalysis and copper catalysis enables the selective
cleavage of carbon-carbon bonds and radical cyanation. This
protocol provided a series of γ-cyanoketones in good yields in
an eco-friendly and sustainable manner. The synthetic utility of
the methodology has been demonstrated through the
construction of significant piperidine moieties. It is anticipated
that synergistic triple catalysis strategy developed in this study
will have broad applications in the development of new
catalytic ring-opening transformations of strained systems.
We are grateful to the National Science Foundation of
China (No. 21901080, 91956201, 21820102003, and
21772053), the Program of Introducing Talents of Discipline to
Universities of China (111 Program, B17019), the Natural
Science Foundation of Hubei Province (2017AHB047) and the
International Joint Research Centre for Intelligent Biosensing
Technology and Health for support of this research.
13 (a) F. Wang, P. Chen, G. Liu, Acc. Chem. Res., 2018, 51, 2036;
(b) A. Hossain, A. Bhattacharyya, O. Reiser, Science, 2019,
364, 450.
14 (a) W. Zhang, F. Wang, S. D. McCann, D. Wang, P. Chen, S. S.
Stahl, G. Liu, Science, 2016, 353, 1014; (b) F. Wang, D. Wang,
X. Wan, L. Wu, P. Chen, G. Liu, J. Am. Chem. Soc., 2016, 138,
15547; (c) D. Wang, F. Wang, P. Chen, Z. Lin, G. Liu, Angew.
Chem. Int. Ed., 2017, 56, 2054; (d) D. Wang, N. Zhu, P. Chen,
Z. Lin, G. Liu, J. Am. Chem. Soc., 2017, 139, 15632; (e) F.
Wang, D. Wang, Y. Zhou, L. Liang, R. Lu, P. Chen, Z. Lin, G. Liu,
Angew. Chem. Int. Ed., 2018, 57, 7140; elegant work from
other groups: (f) W. Sha, L. Deng, S. Ni, H. Mei, J. Han, Y. Pan,
ACS Catal., 2018, 8, 7489; (g) S. Yang, L. Wang, H. Zhang, C.
Liu, L. Zhang, X. Wang, G. Zhang, Y. Li, Q. Zhang, ACS Catal.,
2019, 9, 716; (h) X. Bao, Q. Wang, J. Zhu, Angew. Chem. Int.
Ed., 2019, 58, 2139; (i) T. Wang, Y.-N. Wang, R. Wang, B.-C.
Zhang, C. Yang, Y.-L. Li, X.-S. Wang, Nat. Commun., 2019, 10,
5373; (j) J. Chen, P.-Z. Wang, B. Lu, D. Liang, X.-Y. Yu, W.-J.
Xiao, J.-R. Chen, Org. Lett., 2019, 21, 9763.
15 (a) X.-P. Zeng, Z.-Y. Cao, X. Wang, L. Chen, F. Zhou, F. Zhu, C.-
H. Wang, J. Zhou, J. Am. Chem. Soc., 2016, 138, 416; (b) J. M.
Tanko, R. E. Drumright, J. Am. Chem. Soc., 1992, 114, 1844.
16 The ee values of three representative products bearing
phenyl, alkenyl or alkynyl functional group were measured
(3a: 64% yield, 91:9 er; 5b: 70% yield, E/Z = 3:1, 88:12 er for
(E)-5b, 90:10 er for (Z)-5b; 5e: 76% yield, 88:12 er). Please
see the details in Supporting Information.
17 J. M. Tanko, J. P. Phillips, J. Am. Chem. Soc., 1999, 121, 6078.
18 (a) Z. Lu, M. Shen, T. P. Yoon, J. Am. Chem. Soc., 2011, 133,
1162; (b) A. G. Amador, E. M. Sherbrook, T. P. Yoon, J. Am.
Chem. Soc., 2016, 138, 4722; (c) A. G. Amador, E. M.
Sherbrook, Z. Lu, T. P. Yoon, Synthesis, 2017, 49, 539; (d) X.
Huang, J. Lin, T. Shen, K. Harms, M. Marchini, P. Ceroni, E.
Meggers, Angew. Chem. Int. Ed., 2018, 57, 5454.
19 (a) É. Szőke, É. Lemberkovics, L. Kursinszki, Alkaloids Derived
from Lysine: Piperidine Alkaloids, in Natural Products,
Springer-Verlag, 2013; (b) R. Vardanyan, Piperidine-Based
Drug Discovery, Elsevier, 2018.
Notes and references
1
(a) A. M. Walji, D. W. C. MacMillan, Synlett, 2007, 10, 1477;
(b) J. Zhou, Multicatalyst System in Asymmetric Catalysis,
Wiley, 2014. (c) A. Galván, F. J. Fañanás, F. Rodríguez, Eur. J.
Inorg. Chem., 2016, 1306.
2
3
For a recent review, see: S. P. Sancheti, Urvashi, M. P. Shah,
N. T. Patil, ACS Catal., 2020, 10, 3462.
(a) S. Tang, P. Wang, H.-R. Li, A.-W. Lei, Nat. Commun., 2016,
7, 11676; (b) S. Tang, Y.-C. Liu, X.-L. Gao, P. Wang, P.-F.
Huang, A.-W. Lei, J. Am. Chem. Soc., 2018, 140, 6006.
(a) M. H. Shaw, V. M. Shurtleff, J. A. Terrett, J. D.
Cuthbertson, D. W. C. MacMillan, Science, 2016, 352, 1304;
(b) X. H. Zhang, D. W. C. MacMillan, J. Am. Chem. Soc., 2017,
139, 11353; (c) J. Twilton, M. Christensen, D. A. DiRocco, R. T.
Ruck, I. W. Davies, D. W. C. MacMillan, Angew. Chem. Int. Ed.,
2018, 57, 5369; (d) A. G. Capacci, J. T. Malinowski, N. J.
McAlpine, J. Kuhne, D. W. C. MacMillan, Nature Chem., 2017,
9, 1073.
4
5
6
Q. Yang, L. Zhang, C. Ye, S.-Z. Luo, L.-Z. Wu, C.-H. Tung,
Angew. Chem. Int. Ed., 2017, 56, 3694.
(a) S. Kato, Y. Saga, M. Kojima, H. Fuse, S. Matsunaga, A.
Fukatsu, M. Kondo, S. Masaoka, M. Kanai, J. Am. Chem. Soc.,
2017, 139, 2204; (b) H. Fuse, H. Mitsunuma, M. Kanai, J. Am.
Chem. Soc., 2020, 142, 4493.
7
8
W.-L. Yu, Y.-C. Luo, L. Yan, D. Liu, Z.-Y. Wang, P.-F. Xu, Angew.
Chem. Int. Ed., 2019, 58, 10941.
(a) F. D. Simone, J. Waser, Synthesis, 2009, 20, 3353; (b) T. F.
Schneider, J. Kaschel, D. B. Werz, Angew. Chem. Int. Ed.,
2014, 53, 5504.
(a) J.-R. Chen, X.-Q. Hu, L.-Q. Lu, W.-J. Xiao, Acc. Chem. Res.,
2016, 49, 1911; (b) J. Xuan, T.-T. Zeng, Z.-J. Feng, Q.-H. Deng,
J.-R. Chen, L.-Q. Lu, W.-J. Xiao, Angew. Chem. Int. Ed., 2015,
9
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins