B. Das et al. / Journal of Molecular Structure 1013 (2012) 119–125
125
temperature dependence of the scattered X-ray intensities. Similar
behaviour is also observed in the d values obtained for this
compound.
The in-plane transverse correlation length n\ as well as the lon-
gitudinal correlation length n|| are found to be much higher for
higher ordered phase than those for the lower order phase. The
n\ values diverge near the TGBA–Nꢀ phase transition indicating
second order phase transition.
48
42
36
30
24
BPII
N*
TGBA
300
200
100
SmA*
Acknowledgements
40
50
60
T / oC
70
80
90
This work is supported by Projects: GA ASCR IAA100100911,
CSF P204/11/0723, RFASI 02.740.11.5166 and CSF 202/09/0047.
We would like to express our gratitude to Dr. U. Baumeister for ac-
cess to the 2D area X-ray detector that allows us to record the dif-
fraction patterns. We are also very thankful to Dr. M. Prehm for
assistance in recording the X-ray diffraction images.
Fig. 11. Temperature dependence of the longitudinal, n|| (open circles) and the
transverse, n\ (close squares) correlation lengths within the mesophases.
References
BPII
6
5
4
3
Cr.
[1] J.P.F. Lagerwall, F. Giesselmann, ChemPhysChem 7 (2006) 20.
[2] P. de Gennes, J. Prost, The Physics of Liquid Crystals, Clarendon Press, Oxford,
1999.
[3] S.T. Lagerwall, Ferroelectric and Antiferroelectric Liquid Crystals, Wiley-VCH
Verlag GmbH, Weinheim, 1999.
[4] H. Taniguchi, M. Ozaki, K. Yoshino, K. Satoh, N. Yamasaki, Ferroelectrics 77
(1988) 137.
[5] S.A. Pakhomov, M. Kašpar, V. Hamplová, A.M. Bubnov, H. Sverenyák, M.
Glogarová, I. Stibor, Ferroelectrics 212 (1998) 341.
[6] A. Bubnov, V. Hamplová, M. Kašpar, M. Glogarová, P. Vank, Ferroelectrics 243
(2000) 27.
[7] V. Hamplová, A. Bubnov, M. Kašpar, V. Novotná, M. Glogarová, Liq. Cryst. 30
(2003) 493.
[8] V. Hamplová, A. Bubnov, M. Kašpar, V. Novotná, D. Pociecha, M. Glogarová, Liq.
Cryst. 30 (2003) 627.
SmA*
TGBA
N*
Iso
30
40
50
60
70
80
90
T / oC
[9] V. Hamplová, A. Bubnov, M. Kašpar, V. Novotná, Y. Lhotáková, M. Glogarová,
Liq. Cryst. 30 (2003) 1463.
[10] M. Kašpar, A. Bubnov, V. Hamplová, S. Pirkl, M. Glogarová, Liq. Cryst. 31 (2004)
821.
Fig. 12. Temperature dependence of the real part of complex permittivity
measured on cooling at a frequency of 160 Hz.
[11] A. Bubnov, M. Kašpar, V. Hamplová, M. Glogarová, S. Samaritani, G. Galli, G.
Andersson, L. Komitov, Liq. Cryst. 33 (2006) 559.
[12] D. Catalano, V. Domenici, A. Marini, C.A. Veracini, A. Bubnov, M. Glogarová, J.
Phys. Chem. B 110 (2006) 16459.
is evidently higher than that for the material studied in the present
work; the difference is more than 40 K [28].
[13] W.-L. Tsai, S.-W. Yen, M.J. Hsie, H.-C. Lee, C.M. Fu, Liq. Cryst. 29 (2002) 251.
[14] W.L. Tsai, T.Ch. Lu, H.W. Liu, M.Y. Tsai, C.M. Fu, Liq. Cryst. 27 (2000) 1389.
[15] M. Kašpar, P. Bilková, A. Bubnov, V. Hamplová, V. Novotná, M. Glogarová, K.
4. Summary of the results and conclusions
ˇ
Knizek, D. Pociecha, Liq. Cryst. 35 (2008) 641.
[16] V. Novotná, V. Hamplová, A. Bubnov, M. Kašpar, M. Glogarová, N. Kapernaum,
S. Bezner, F. Giesselmann, J. Mater. Chem. 19 (2009) 3992.
[17] N. Podoliak, V. Novotná, M. Glogarová, V. Hamplová, M. Kašpar, A. Bubnov, N.
Kapernaum, F. Giesselmann, Phase Transitions 83 (2010) 1026.
[18] V. Novotná, V. Hamplová, M. Kašpar, N. Podoliak, A. Bubnov, M. Glogarová, D.
Nonnenmacher, F. Giesselmann, Liq. Cryst. 38 (2011) 649.
[19] A. Bubnov, V. Novotná, V. Hamplová, M. Kašpar, M. Glogarová, J. Mol. Struct.
892 (2008) 151.
The mesomorphic and structural properties of a liquid crystal-
line material with chiral lactate group possessing a blue phase,
cholesteric, TGBA and SmAꢀ phases has been studied by different
experimental techniques.
The layer spacing (d) in the SmAꢀ phase, determined from X-ray
diffraction measurements, is slightly temperature dependent.
Within the TGBA phase, the d/l ratio indicates the existence of
monolayer SmA blocks and identifies the TGB phase of this com-
pound to be composed of blocks of SmA layers.
[20] A. Bubnov, S. Pakhomov, M. Kašpar, V. Hamplová, M. Glogarová, Mol. Cryst. Liq.
Cryst. 328 (1999) 317.
[21] M. Garic´, A. Bubnov, V. Novotná, M. Kašpar, V. Hamplová, D.Z. Obadovic, M.
Glogarová, Liq. Cryst. 32 (2005) 565.
[22] G. Sarkar, M.K. Das, R. Paul, B. Das, W. Weissflog, Phase Transitions 82 (2009)
433.
[23] G. Sarkar, B. Das, M.K. Das, U. Baumaister, W. Weissflog, Mol. Cryst. Liq. Cryst.
540 (2011) 188.
Definite discontinuities in the X-ray scattering are observed at
the Nꢀ–TGBA phase boundary. The increased intensities at this
phase transition mark the onset of the long range smectic ordering
of the TGBA phase. A rapid increase in the X-ray scattering intensi-
ties is again observed at the TGBA–SmAꢀ phase transition, perhaps
due to the presence of strong Smectic Aꢀ fluctuations. Since, the
transition from the Nꢀ phase to the Sm Aꢀ phase in this compound
is facilitated via the formation of the TGBA phase, both the appear-
ance of the smectic blocks at the Nꢀ–TGBA phase transition as well
as the disappearance of the helical twist of the cholesteric director
at the TGBA–SmAꢀ phase boundary is clearly reflected from the
[24] A. Chakraborty, M.K. Das, B. Das, S. Findeisen-Tandel, M.G. Tamba, U.
Baumeister, H. Kresse, W. Weissflog, Liq. Cryst. 38 (2011) 1085.
[25] D.S. Shankar Rao, S. Krishna Prasad, V.N. Raja, C.V. Yelamaggad, S. Anitha
Nagamani, Phy. Rev. Lett. 87 (2001) 085504.
ˇ
[26] D.Z. Obadovic´, A. Vajda, M. Garic´, A. Bubnov, V. Hamplová, M. Kašpar, K. Fodor-
Csorba, J. Therm. Anal. Calorim. 82 (2005) 519.
[27] M. Kašpar, V. Hamplová, A. Bubnov, V. Novotná, unpublished results of the
group.
[28] M. Kašpar, V. Hamplová, S.A. Pakhomov, I. Stibor, H. Sverenyák, A.M. Bubnov,
M. Glogarová, P. Vank, Liq. Cryst. 22 (1997) 557.