48
M. Fakis et al. / Dyes and Pigments 87 (2010) 44e48
0.5
0.4
0.3
0.2
0.1
0.0
resolved fluorescence dynamics. The tri-branched molecule, in
solutions, exhibits ultrafast solvation decay. Solvation rate was
affected by both polarity and viscosity, being greatest in DMF,
a solvent of high polarity and lowest in ACP, a solvent of high
viscosity. In contrast, solvation efficiency was affected only by
solvent polarity and was enhanced as polarity increased. Anisotropy
dynamics revealed ultrafast decay indicating excitation delocaliza-
tion among the branches, which is desirable in the context of the
enhancement of non-linear optical properties.
2500
2000
1500
1000
500
Iparallel
Iperpendicular
anisotropy r(t)
References
[1] Wang Y, He GS, Prasad PN, Goodson III T. J Am Chem Soc 2005;127:10128.
[2] Wang D, Wang X, He Q, Zhou M, Rui W, Tao X, et al. Tetrahedron Lett
2008;49:5871.
0
0.0
0.5
1.0
1.5
2.0
[3] Wang Z, Wang X, Zhao J, Jiang W, Yang P, Fang X, et al. Dyes Pigm 2008;79:145.
[4] Mazzucato S, Fortunati I, Scolaro S, Zerbetto M, Ferrante C, Signorini R, et al.
Phys Chem Chem Phys 2007;9:2999.
[5] Halim M, Pillow JNG, Samuel IDW, Burn PL. Synth Met 1999;102:922.
[6] Bera RN, Cumpstey N, Burn PL, Samuel IDW. Adv Funct Mater 2007;17:1149.
[7] Lawrence JR, Turnbull GA, Samuel IDW, Richards GJ, Burn PL. Opt Lett
2004;29:869.
Time (ps)
Fig. 6. Polarized fluorescence dynamics of TPA(DTA)3 in THF and ultrafast anisotropy
decay. The excitation and detection wavelengths were 400 nm and 530 nm respec-
tively and the concentration was 10ꢀ4M.
[8] Andronov A, Gilat SL, Frechet JMJ, Ohta K, Neuwahl FVR, Fleming GR. J Am
Chem Soc 2000;122:1175.
[9] Cao D, Liu Z, Deng Y, Li G, Zhang G. Dyes Pigm 2009;83:348.
[10] Ning Z, Tian H. Chem Commun; 2009:5483.
[11] Terenziani F, Droumaguet CL, Katan C, Mongin O, Blanchard-Desce MB.
ChemPhysChem 2007;8:723.
[12] Katan C, Terenziani F, Mongin O, Werts MHV, Porres L, Pons T, et al. J Phys
Chem A 2005;109:3024.
The long-scale fluorescence dynamics of TPA(DTA)3 in ACP and
DMF are shown in Fig. 3. As in the case of THF, a wavelength
independent long decay component (w1 ns decay constant) is
observed in both solvents attributed to radiative population decay.
3.3. Time resolved anisotropy
[13] Macak P, Luo Y, Norman P, Ågren H. J Chem Phys 2000;113:7055.
[14] Jiang Y, Wang Y, Hua J, Qu S, Qian S, Tian H. J Polym Sci Part A Polym Chem
2009;47:4400.
The anisotropy decay is a powerful method for determining
whether exciton transfer occurs among the branches of multi-
branched molecules. Anisotropy dynamics can also provide infor-
mation about the nature of this transfer. Energy hopping among
branches (incoherent process) orexcitation delocalization (coherent
process) can occur affecting the polarization of the fluorescence and
thus the anisotropy dynamics. If this is the case, a fast depolarization
of the emission would be observed leading to a fast drop of the
anisotropy [19,29]. For this reason the ultrafast polarized dynamics
of TPA(DTA)3 (concentration 10ꢀ4M) were detected at 530 nm. The
results are shown in Fig. 6 together with the calculated anisotropy
decay within the ultrafast time scale. The anisotropy decays to
a residual value of 0.13 with an ultrafast decay within the temporal
resolution of ourtechnique. This ultrafast anisotropy decayis toofast
and cannot be due to a hopping mechanism [34,35]. It is strongly
associated to excitation delocalization to an area larger than one
branch due to interactions among branches. These interactions are
supported by the nitrogen central core which has been found to
enhance excitation coupling among branches [17]. Strong inter-
branch interactions are desirable and are associated with the
enhancement of non-linear optical properties in tri-branched
molecules.
[15] Chung SJ, Kim KS, Lin TC, He GS, Swiatkiewicz J, Prasad PN. J Phys Chem B
1999;103:10741.
[16] Drobizhev M, Karotki A, Dzenis Y, Rebane A, Suo Z, Spangler SW. J Phys Chem B
2003;107:7540.
[17] Goodson III T. Acc Chem Res 2005;38:99.
[18] Lor M, Viaene L, Pilot R, Fron E, Jordens S, Schweitzer G, et al. J Phys Chem B
2004;108:10721.
[19] Varnavski O, Samuel IDW, Palsson LO, Beavington R, Burn PL, Goodson III T.
J Chem Phys 2002;116:8893.
[20] Yan Y, Li B, Liu K, Dong Z, Wang X, Qian S. J Phys Chem A 2007;111:4188.
[21] Li B, Tong R, Zhu R, Meng F, Tian H, Qian S. J Phys Chem B 2005;109:10705.
[22] Lakowicz JR. Principles of fluorescence spectroscopy. New York: Kluwer
Academic, Plenum Publishers; 1999.
[23] Chakrabarty D, Harza P, Chakraborty A, Seth D, Sarkar N. Chem Phys Lett
2003;381:697.
[24] Burdzinski G, Buntinx G, Poizat O, Toele P, Zhang H, Glasbeek M. Chem Phys
Lett 2004;392:470.
[25] Stylianakis MM, Mikroyannidis J, Dong Q, Pei J, Liu Z, Tian W. Sol Energ Mater
Sol Cel 2009;93:952.
[26] Fakis M, Anestopoulos D, Giannetas V, Persephonis P, Mikroyannidis J. J Phys
Chem B 2006;110:12926.
[27] Fakis M, Anestopoulos D, Giannetas V, Persephonis P.
2006;110:24897.
J
Phys Chem
B
[28] Li B, Tong R, Zhu R, Hua J, Tian H, Qian S. J Lumin 2006;119-120:116.
[29] Varnavski O, Leanov A, Liu L, Takacs J, Goodson III T. Phys Rev
2000;61:12732.
B
[30] de Belder G, Jordens S, Lor M, Schweitzer G, De R, Weil T, et al. J Photochem
Photobiol A Chem 2001;145:61.
[31] Davis BL, Melinger JS, McMorrow D, Peng Z, Pan Y. J Lumin 2004;106:301.
[32] Singh PK, NAth S, Kumbhakar M, Bhasikuttan AC, Pal H. J Phys Chem A
2008;112:5598.
4. Conclusions
[33] Nad S, Kumbhakar M, Pal H. J Phys Chem A 2003;107:4808.
[34] Varnavski O, Yan X, Mongin O, Blanchard-Desce M, Goodson III T. J Phys Chem
C 2007;111:149.
[35] Varnavski OP, Ostrovski JC, Sukhomlinova L, Twieg RJ, Bazan GC, Goodson III T.
J Am Chem Soc 2002;77:1120.
A tri-branched molecule with triphenylamine central core and
2,3-di(2-thienyl)acrylonitrile branches has been studied in solution
and solid film concerning the steady-state spectra and time