3282
T. R. Yerramreddy et al. / Bioorg. Med. Chem. Lett. 20 (2010) 3280–3283
Table 1
for the observed non-linear relationship between transdermal flux
values and prodrug concentration.30
Solubility of naltrexone prodrugs and naltrexone at pH 5.0 in 0.3 M acetate buffer
Analog
Solubility (in mM)
Relative solubilitya
Acknowledgment
4a
4b
9a
9b
629
952
1035
796
1.86
2.81
3.06
2.35
—
This work was supported by NIH Grant R01 DA13425.
NTX
338
References and notes
a
Relative solubility represents solubility of naltrexone prodrug divided by sol-
ubility of NTX.
1. Terenius, L. Curr. Opin. Chem. Biol. 1998, 2, 541.
2. Volpicelli, J. R.; Alterman, A. I.; Hayashida, M. Arch. Gen. Psychiatry 1992, 49,
876.
3. Kranzler, H. R.; Lowe, V. M.; Kirk, J. V. Neuropyschopharmacology 2000, 22, 493.
4. PDR Generics; 2nd Ed.; Medical Economics: Montvale, New Jersey, USA, 1996;
pp 2229–2233.
5. Rothenberg, J. L.; Sullivan, M. A.; Church, S. H.; Seracini, A.; Collins, E.; Kleber, H.
D.; Nunes, E. V. J. Subst. Abuse Treat. 2002, 23, 351.
Table 2
Hydrolysis rate constants of naltrexone prodrugs in acetate buffer at pH 5.0 and in
HEPES-buffered Hanks’ balanced salt solution at pH 7.4
Analog Acetate buffer solution
HEPES-buffered Hanks’ balanced salt
6. Volpicelli, J. R.; Rhines, K. C.; Rhines, J. S. Arch. Gen. Psychiatry 1997, 54, 737.
7. Gooberman, L. L. U. S. Patent 6,203,813, 2001.
{kpH 5.0 [hÀ1]}
solution {kpH 7.4 [hÀ1]}
8. Gannu, R.; Vishnu, Y. V.; Kishan, V.; Rao, Y. M. Curr. Drug Deliv. 2007, 4, 69.
9. Hale, R. L.; Amy, T. L.; Dennis, W. S.; Michael, J. N. C. U. S. Patent 5,622,944,
1997.
10. Vaddi, H. K.; Hamad, M. O.; Chen, J.; Banks, S. L.; Crooks, P. A.; Stinchcomb, A. L.
Pharm. Res. 2005, 22, 758.
4a
4b
9c
9d
0.00193
0.00184
0.000983
0.00111
0.0288
0.0258
0.159
0.159
11. Pillai, O.; Hamad, M. O.; Crooks, P. A.; Stinchcomb, A. L. Pharm. Res. 2004, 21,
1146.
12. Hammell, D. C.; Stolarczyk, E. I.; Klausner, M.; Hamad, M. O.; Crooks, P. A.;
Stinchcomb, A. L. J. Pharm. Sci. 2005, 94, 828.
13. Valiveti, S.; Hammell, D. C.; Paudel, K. S.; Hamad, M. O.; Crooks, P. A.;
Stinchcomb, A. L. J. Controlled Release 2005, 102, 509.
14. Banga, A. K. Expert Opin. Drug Deliv. 2009, 6, 343.
15. Oh, J. H.; Park, H. H.; Do, K. Y.; Han, M.; Hyun, D. H.; Kim, C. G.; Kim, C. H.; Lee, S.
S.; Hwang, S. J.; Shin, S. C.; Cho, C. W. Eur. J. Pharm. Biopharm. 2008, 69, 1040.
16. Kolli, C. S.; Banga, A. K. Pharm. Res. 2008, 25, 104.
17. Lin, W.; Cormier, M.; Samiee, A.; Griffin, A.; Johnson, B.; Teng, C. L.; Hardee, G.
E.; Daddona, P. E. Pharm. Res. 2001, 18, 1789.
18. Prausnitz, M. R.; Langer, R. Nat. Biotechnol. 2008, 26, 1261.
19. Henry, S.; McAllister, D. V.; Allen, M. G.; Prausnitz, M. R. J. Pharm. Sci. 1998, 87,
922.
20. Banks, S. L.; Pinninti, R. R.; Gill, H. S.; Crooks, P. A.; Prausnitz, M. R.; Stinchcomb,
A. L. Pharm. Res. 2008, 25, 1677.
21. Banks, S. L.; Paudel, K. S.; Pinninti, R. R.; Gill, H. S.; Crooks, P. A.; Brogden, N. K.;
Prausnitz, M. R.; Stinchcomb, A. L. J. Pharm. Sci. 2010, in press.
22. Wermeling, D. P.; Banks, S. L.; Hudson, D. A.; Gill, H. S.; Gupta, J.; Prausnitz, M.
R.; Stinchcomb, A. L. Proc. Natl. Acad. Sci. U.S.A. 2008, 105, 2058.
23. Riley, T.; Riggs-Sauthier, J. Pharm. Technol. 2008, 32, 88.
24. Harris, J. M.; Chess, R. B. Nat. Rev. Drug Disc. 2003, 2, 214.
25. Veronese, F. M.; Pasut, G. Drug Discovery Today 2005, 10, 1451.
26. Bonina, F. P.; Puglia, C.; Barbuzzi, T.; deCaprariis, P.; Palagiano, F.; Rimoli, M. G.;
Saija, A. J. Pharm. Sci. 2001, 14, 123.
of naltrexone was investigated in acetate buffer at pH 5.0, and in
HEPES-buffered Hanks’ balanced salt solution at pH 7.4. The
hydrolysis of the labile prodrug moieties followed pseudo first-or-
der kinetics, and gave apparent hydrolysis rate constants. The
hydrolysis rate constant values (kpH 5.0 in acetate buffer; kpH 7.4
in HEPES-buffered Hanks’ balanced salt solution [hÀ1]) obtained
for the naltrexone prodrugs are illustrated in Table 2. The chemical
hydrolysis rates of the four prodrugs were sufficiently low to pro-
duce less than 10% hydrolysis in the donor compartment through-
out the 48 h duration of the diffusion study. Moreover, all four
prodrugs were hydrolyzed rapidly to naltrexone at physiological
pH (7.4) with the 3-O-carbamate naltrexone prodrug hydrolysis
rates being approximately six times faster than the corresponding
3-O-carboxylate naltrexone prodrug hydrolysis rates.
The performance of 4a in in vitro diffusion experiments
employing a transdermal microneedle formulation has been re-
ported elsewhere.30 Briefly, full thickness Yucatan minipig skin
(1.7 mm thickness, diffusion area 0.95 cm2) was utilized, and
pierced with solid metal, 750 mm-long microneedles before
mounting the skin in a PermeGear flow-through diffusion cell sys-
tem at 32 °C. Substantial non-linearity in the flux-concentration
profile of 4a was observed, ultimately resulting in decreased trans-
port rates. It was observed that the viscosity of the donor solution
of 4a increased exponentially as a function of prodrug concentra-
tion. It has been suggested that changes in the viscosity properties
of the donor solution may have a detrimental effect on delivery
rates of drugs through MN-treated skin.32 Thus, it is postulated
that the non-linearity of the flux of 4a with increasing concentra-
tion is caused by elevated viscosity of the donor solution. The other
prodrugs reported herein, that is, 4b, 9a and 9b, showed similar
behavior to 4a (data not published).
27. Thomas, J. D.; Majumdar, S.; Sloan, K. B. Molecules 2009, 14, 4231.
28. N’Da, D. D.; Breytenbach, J. C. J. Pharm. Pharmacol. 2009, 61, 721.
29. Chaphekar, S. S.; Samant, S. D. Appl. Catal. A: General 2003, 242, 11.
30. Mikolaj, M.; Thirupathi Reddy, Y.; Priyanka, G.; Crooks, P. A.; Stinchcomb, A. L. J.
Controlled Release 2010, in press.
31. Analytical data and yields of the all the synthesized compounds: (2a): 1H NMR
(CDCl3): d 1.43 (s, 9H), 2.48 (t, 2H), 3.57 (s, 3H), 3.56 (t, 2H), 3.61–3.65 (6H),
3.69 (t, 2H); 13C NMR (CDCl3): d 28.5, 33.5, 59.1, 66.2, 70.1, 70.2, 70.4, 71.5,
81.9, 172.9; MS (ESI) m/z: 249 (MH+); Yield: 92%: (2b): 1H NMR (CDCl3): d 1.39
(s, 9H), 2.43 (t, 2H), 3.55–3.73 (m, 10H), 4.72 (s, 2H), 7.32–7.43 (m, 5H); 13C
NMR (CDCl3): d 28.6, 33.3, 66.7, 70.0, 70.1, 70.3, 72.8, 82.0, 127.3, 127.4, 128.6,
137.5, 173.2; MS (ESI) m/z: 325 (MH+); Yield: 97%: (3a): 1H NMR (CDCl3): d
2.61 (t, 2H), 3.38 (s, 3H), 3.59 (t, 2H), 3.63–3.66 (m, 6H), 3.76 (t, 2H), 10.82 (s,
1H); 13C NMR (CDCl3): d 34.6, 59.5, 66.2, 70.1, 70.2, 70.4, 70.6, 177.2; MS (ESI)
m/z: 193 (MH+); Yield: 94%: (3a1): 1H NMR (CDCl3): d 2.58 (t, 2H), 3.56–3.76
(m, 10H), 4.54 (s, 2H), 7.24–7.33 (m, 5H), 11.18 (s, 1H); 13C NMR (CDCl3): d
33.9, 66.5, 70.0, 70.2, 70.4, 73.1, 127.5, 127.6, 128.5, 137.3, 177.3; MS (ESI) m/z:
269 (MH+); Yield: 95%: (3b): 1H NMR (CDCl3): d 2.56 (t, 2H), 3.56–3.62 (m, 6H),
3.63–3.76 (m, 4H), 7.12 (br s, 2H); 13C NMR (CDCl3): d 34.6, 61.3, 66.4, 70.1,
70.3, 70.4, 177.3; MS (ESI) m/z: 179 (MH+); Yield: 98%: (4a): 1H NMR (CDCl3): d
0.15–0.18 (m, 2H), 0.55–0.58 (m, 2H), 0.87 (m, 1H), 1.57–1.67 (m, 3H), 1.86 (m,
1H), 2.13 (m, 1H), 2.28–2.42 (m, 4H), 2.87 (t, 2H), 2.96–3.20 (m, 2H), 3.38 (s,
3H), 3.55–3.66 (m, 8H), 3.87, (t, 2H), 4.68 (s, 1H), 6.67 (d, J = 8.4 Hz, 1H), 6.82
(d, J = 8.4 Hz, 1H); 13C NMR (CDCl3): d 3.98, 4.22, 9.44, 23.07, 30.71, 31.05,
31.26, 34.92, 34.96, 36.12, 43.51, 50.66, 59.15, 59.28, 61.82, 69.73, 63.75, 66.42,
66.45, 69.06, 70.05, 70.25, 70.33, 70.34, 70.43, 70.53, 71.62, 72.53, 90.52,
119.33, 122.84, 129.98, 130.21, 132.24, 147.46, 169.01, 207.63; MS (ESI) m/z:
516 (MH+); Yield: 86%: (4b): 1H NMR (CDCl3): d 0.12–0.16 (m, 2H), 0.51–0.57
(m, 2H), 0.88 (m, 1H), 1.55–1.66 (m, 3H), 1.85 (m, 1H), 2.16 (m, 1H), 2.25–2.40
(m, 4H), 2.85 (t, 2H), 2.99–3.21 (m, 2H), 3.58–3.67 (m, 8H), 3.72, (t, 2H), 4.67 (s,
1H), 6.65 (d, J = 8.1 Hz, 1H), 6.83 (d, J = 8.1 Hz, 1H); 13C NMR (CDCl3): d 3.93,
4.19, 9.43, 23.04, 30.72, 31.03, 31.25, 34.90, 34.98, 36.13, 43.53, 50.65, 59.17,
61.70, 61.81, 69.72, 63.77, 66.40, 66.47, 69.05, 70.03, 70.24, 70.32, 70.35, 70.45,
In conclusion, 3-O-pegylated carboxylate prodrugs of naltrexone
(4a–4b) and 3-O-pegylated carbamate prodrugs of naltrexone (9a–
9b) have been synthesized and fully characterized (1H NMR, 13C
NMR, and mass spectroscopy).31 These prodrugs had higher aqueous
solubilities and showed an approximately 2–3-fold enhancement in
their aqueous solubilities over naltrexone. In stability studies, these
prodrugs of naltrexone were hydrolyzed rapidly at physiological pH.
The 3-O-pegylated carbamate prodrugs had hydrolysis rates that
were approximately six times faster than the hydrolysis rates of 3-
O-pegylated carboxylate prodrugs in pH 7.4 HEPES-buffered Hanks’
solution. Viscosity effects may be a confounding factor responsible