J. Tang et al. / Bioorg. Med. Chem. Lett. 20 (2010) 3275–3279
6. Shimura, K.; Kodama, E. Future HIV Ther. 2008, 2, 411.
3279
optimization protocol using PrimeX. The final models were further
refined by restraint energy minimization using OPLS 2005 force-
field36 with GB/SA implicit solvent model. Docking of all com-
pounds in the new homology model was carried out using Glide
v2.5 at Standard Precision40 with both Mg2+ ions and the interfacial
hydrophobic pocket between the HIV IN and DNA defined as re-
quired constraints. Validation of both models were carried out by
docking of either raltegravir (2, model a) or elvitegravir (1, model
b) into the ligand binding site and structure comparison with the
original X-ray structure of PFV IN (Fig. 4). Consistent with observa-
tions from the original crystallographic studies, in these models
inhibitors seem to adopt an orientation perpendicular to the pro-
tein surface with the chelating group binding to both Mg2+ ions.
This chelation then allows the terminal benzyl group to induce a
pocket by taking the space originally occupied by the terminal
adenosine on the 30 end of viral DNA. Overall, the binding of IN
inhibitors conforms to a previously proposed interfacial inhibition
mechanism2 as they bind all three key elements: the enzyme by
hydrophobic and Van der Waals interactions; the metals by chela-
7. Sato, M.; Motomura, T.; Aramaki, H.; Matsuda, T.; Yamashita, M.; Ito, Y.;
Kawakami, H.; Matsuzaki, Y.; Watanabe, W.; Yamataka, K.; Ikeda, S.; Kodama,
E.; Matsuoka, M.; Shinkai, H. J. Med. Chem. 2006, 49, 1506.
8. Cocohoba, J.; Dong, B. J. Clin. Ther. 2008, 30, 1747.
9. Summa, V.; Petrocchi, A.; Bonelli, F.; Crescenzi, B.; Donghi, M.; Ferrara, M.;
Fiore, F.; Gardelli, C.; Gonzalez Paz, O.; Hazuda, D. J.; Jones, P.; Kinzel, O.; Laufer,
R.; Monteagudo, E.; Muraglia, E.; Nizi, E.; Orvieto, F.; Pace, P.; Pescatore, G.;
Scarpelli, R.; Stillmock, K.; Witmer, M. V.; Rowley, M. J. Med. Chem. 2008, 51,
5843.
10. Hazuda, D. J.; Felock, P.; Witmer, M.; Wolfe, A.; Stillmock, K.; Grobler, J. A.;
Espeseth, A.; Gabryelski, L.; Schleif, W.; Blau, C.; Miller, M. D. Science 2000, 287,
646.
11. McColl, D. J.; Chen, X. Antiviral. Res. 2005, 85, 101.
12. Van Maele, B.; Debyser, Z. AIDS Rev. 2005, 7, 26.
13. Dyda, F.; Hickman, A. B.; Jenkins, T. M.; Engelman, A.; Craigie, R.; Davies, D. R.
Science 1994, 266, 1981.
14. Bradley, C. M.; Craigie, R. Proc. Natl. Acad. Sci. U.S.A. 2005, 102, 17543.
15. Chen, J. C. H.; Krucinski, J.; Miercke, L. J. W.; Finer-Moore, J. S.; Tang, A. H.;
Leavitt, A. D.; Stroud, R. M. Proc. Natl. Acad. Sci. U.S.A. 2000, 97, 8233.
16. Goldgur, Y.; Craigie, R.; Cohen, G. H.; Fujiwara, T.; Yoshinaga, T.; Fujishita, T.;
Sugimoto, H.; Endo, T.; Murai, H.; Davies, D. R. Proc. Natl. Acad. Sci. U.S.A. 1999,
96, 13040.
17. Engelman, A.; Craigie, R. J. Virol. 1992, 66, 6361.
18. Alian, A.; Griner, S. L.; Chiang, V.; Tsiang, M.; Jones, G.; Birkus, G.; Geleziunas,
R.; Leavitt, A. D.; Stroud, R. M. Proc. Natl. Acad. Sci. U.S.A. 2009, 106, 8192.
19. Goldgur, Y.; Dyda, F.; Hickman, A. B.; Jenkins, T. M.; Craigie, R.; Davies, D. R.
Proc. Natl. Acad. Sci. U.S.A. 1998, 95, 9150.
20. Carlson, H. A.; Masukawa, K. M.; Rubins, K.; Bushman, F. D.; Jorgensen, W. L.;
Lins, R. D.; Briggs, J. M.; McCammon, J. A. J. Med. Chem. 2000, 43, 2100.
21. Mustata, G. I.; Brigo, A.; Briggs, J. M. Bioorg. Med. Chem. Lett. 2004, 14, 1447.
22. Barreca, M. L.; Ferro, S.; Rao, A.; De Luca, L.; Zappala, M.; Monforte, A.-M.;
Debyser, Z.; Witvrouw, M.; Chimirri, A. J. Med. Chem. 2005, 48, 7084.
23. Dayam, R.; Sanchez, T.; Clement, O.; Shoemaker, R.; Sei, S.; Neamati, N. J. Med.
Chem. 2005, 48, 111.
24. Dayam, R.; Sanchez, T.; Neamati, N. J. Med. Chem. 2005, 48, 8009.
25. Deng, J.; Lee, K. W.; Sanchez, T.; Cui, M.; Neamati, N.; Briggs, J. M. J. Med. Chem.
2005, 48, 1496.
26. Deng, J.; Sanchez, T.; Neamati, N.; Briggs, J. M. J. Med. Chem. 2006, 49, 1684.
27. Dayam, R.; Al-Mawsawi, L. Q.; Zawahir, Z.; Witvrouw, M.; Debyser, Z.; Neamati,
N. J. Med. Chem. 2008, 51, 1136.
tion; and the DNA by p–p stacking. Further docking of compounds
1–7 was conducted with the model based on PDB: 3L2T (model a).
Remarkably all active compounds 1–5 are docked similarly with
the terminal benzyl group optimally oriented to fill in the newly
created pocket (Fig. 5a–d). As a result, close contacts are observed
between this terminal benzyl group and both viral DNA and neigh-
boring IN amino acids residues (Fig. 5 d). By contrast, the terminal
benzyl group of compound 6 is skewed away from the pocket
(Fig. 5 e) and compound 7 adopts a conformation in which the ben-
zyl group is pointing to the opposite direction of the pocket (Fig. 5
f). These docking results are in agreement with observed inhibitory
activities against HIV IN and prove that this new docking model is
robust.
In conclusion, we have designed and synthesized a series of new
DHP type IN inhibitors based on known pharmacophore and
homologous docking models. The unexpected assay results led us
to construct a new docking model for HIV IN binding, which pro-
vides docking results that strongly corroborate observed biological
activities. We expect this model to serve as a useful platform for
the design and discovery of novel HIV IN inhibitors.
28. De Luca, L.; Barreca, M. L.; Ferro, S.; Iraci, N.; Michiels, M.; Christ, F.; Debyser,
Z.; Witvrouw, M.; Chimirri, A. Bioorg. Med. Chem. Lett. 2008, 18, 2891.
29. De Luca, L.; Barreca, M. L.; Ferro, S.; Christ, F.; Iraci, N.; Gitto, R.; Monforte, A.
M.; Debyser, Z.; Chimirri, A. ChemMedChem 2009, 4, 1311.
30. Hazuda, D. J.; Anthony, N. J.; Gomez, R. P.; Jolly, S. M.; Wai, J. S.; Zhuang, L.;
Fisher, T. E.; Embrey, M.; Guare, J. P., Jr.; Egbertson, M. S.; Vacca, J. P.; Huff, J. R.;
Felock, P. J.; Witmer, M. V.; Stillmock, K. A.; Danovich, R.; Grobler, J.; Miller, M.
D.; Espeseth, A. S.; Jin, L.; Chen, I. W.; Lin, J. H.; Kassahun, K.; Ellis, J. D.; Wong,
B. K.; Xu, W.; Pearson, P. G.; Schleif, W. A.; Cortese, R.; Emini, E.; Summa, V.;
Holloway, M. K.; Young, S. D. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 11233.
31. Boros, E. E.; Edwards, C. E.; Foster, S. A.; Fuji, M.; Fujiwara, T.; Garvey, E. P.;
Golden, P. L.; Hazen, R. J.; Jeffrey, J. L.; Johns, B. A.; Kawasuji, T.; Kiyama, R.;
Koble, C. S.; Kurose, N.; Miller, W. H.; Mote, A. L.; Murai, H.; Sato, A.; Thompson,
J. B.; Woodward, M. C.; Yoshinaga, T. J. Med. Chem. 2009, 52, 2754.
32. Garvey, E. P.; Johns, B. A.; Gartland, M. J.; Foster, S. A.; Miller, W. H.; Ferris, R. G.;
Hazen, R. J.; Underwood, M. R.; Boros, E. E.; Thompson, J. B.; Weatherhead, J. G.;
Koble, C. S.; Allen, S. H.; Schaller, L. T.; Sherrill, R. G.; Yoshinaga, T.; Kobayashi,
M.; Wakasa-Morimoto, C.; Miki, S.; Nakahara, K.; Noshi, T.; Sato, A.; Fujiwara, T.
Antimicrob. Agents Chemother. 2008, 52, 901.
33. Pace, P.; Di Francesco, M. E.; Gardelli, C.; Harper, S.; Muraglia, E.; Nizi, E.;
Orvieto, F.; Petrocchi, A.; Poma, M.; Rowley, M.; Scarpelli, R.; Laufer, R.;
Gonzalez Paz, O.; Monteagudo, E.; Bonelli, F.; Hazuda, D.; Stillmock, K. A.;
Summa, V. J. Med. Chem. 2007, 50, 2225.
34. Chen, X.; Tsiang, M.; Yu, F.; Hung, M.; Jones, G. S.; Zeynalzadegan, A.; Qi, X.; Jin,
H.; Kim, C. U.; Swaminathan, S.; Chen, J. M. J. Mol. Biol. 2008, 380, 504.
35. Ferro, S.; De Luca, L.; Barreca, M. L.; Iraci, N.; De Grazia, S.; Christ, F.; Witvrouw,
M.; Debyser, Z.; Chimirri, A. J. Med. Chem. 2009, 52, 569.
Acknowledgments
This research was supported by the Center for Drug Design at
the University of Minnesota and by the Center for Cancer Research,
National Cancer Institute, NIH. We thank Professor Robert Vince for
discussion and the University of Minnesota Supercomputing Insti-
tute for providing computational resources.
Supplementary data
Supplementary data associated with this article can be found, in
36. Jorgensen, W. L.; Maxwell, D. S.; Tirado-Rives, J. J. Am. Chem. Soc. 1996, 118,
11225.
References and notes
37. Still, W. C.; Tempczyk, A.; Hawley, R. C.; Hendrickson, T. J. Am. Chem. Soc. 1990,
112, 6127.
38. Hare, S.; Gupta, S. S.; Valkov, E.; Engelman, A.; Cherepanov, P. Nature 2010, 464,
232.
39. Maestro v9.0, G. v., Prime v2.1, Macromodel v9.7. Schrodinger, LLC: New York.
40. Friesner, R. A.; Banks, J. L.; Murphy, R. B.; Halgren, T. A.; Klicic, J. J.; Mainz, D. T.;
Repasky, M. P.; Knoll, E. H.; Shelley, M.; Perry, J. K.; Shaw, D. E.; Francis, P.;
Shenkin, P. S. J. Med. Chem. 2004, 47, 1739.
1. Asante-Appiah, E.; Skalka, A. M. Antiviral. Res. 1997, 36, 139.
2. Pommier, Y.; Johnson, A. A.; Marchand, C. Nat. Rev. Drug Discovery 2005, 4, 236.
3. Coiras, M.; Lopez-Huertas, M. R.; Perez-Olmeda, M.; Alcami, J. Nat. Rev.
Microbiol. 2009, 7, 798.
4. Dahl, V.; Josefsson, L.; Palmer, S. Antiviral. Res. 2009, 85, 286.
5. Marchand, C.; Maddali, K.; Metifiot, M.; Pommier, Y. Curr. Top. Med. Chem. 2009,
9, 1016.