ORGANIC
LETTERS
XXXX
Vol. XX, No. XX
000–000
Synthesis of High-Value 1,6-Enynes by
Tandem Fragmentation/Olefination
Tung T. Hoang and Gregory B. Dudley*
Department of Chemistry and Biochemistry, Florida State University, Tallahassee,
Florida 32306-4390, United States
Received July 1, 2013
ABSTRACT
A tandem process provides high-value 1,6-enynes that are otherwise difficult to prepare. Two base-mediated reactions;fragmentation and
olefination;are executed in a coordinated manner that is overall more efficient than either reaction on its own. The 1,6-enynes can be
strategically employed in conjunction with carbocyclization to deliver important targets, as noted for reported syntheses of hirsutene and illudol.
Carbocycle construction is one of the enduring goals
of organic synthesis. Many annulation and cycloisomeri-
zation strategies1 leverage the thermodynamic potential
energy of alkenes and alkynes to drive the formation of
new rings and associated CÀC bonds (Figure 1). Unsatu-
rated hydrocarbon building blocks are the foundation of
these strategies; the current work is focused on the efficient
preparation of such high-value hydrocarbon systems.
We have been developing ring-opening fragmentation
reactions that produce diverse keto-alkyne building blocks
(Scheme 1).2,3 These triflate-centered4 studies build on
the pioneering work of Eschenmoser, Coke, and others5
and perhaps foreshadow recent efforts to produce allenes.6
Our ongoing methodology7 is proving useful for synthe-
sis.8 Here we describe the new strategic pairing of a re-
lated fragmentation reaction9 with olefination, to deliver
1,6-enyne hydrocarbons that are otherwise difficult to
prepare. Potential impacts on, for example, the synthesis
of sesquiterpene natural products are noted.
The central objective of this methodology is to provide
general and efficient access to high-value10 1,6-enynes. Most
1,6-enynes employed in carbocyclization methodologies
(1) Select reviews: (a) Watson, I. D. G.; Toste, F. D. Chem. Sci. 2012,
3, 2899. (b) Toullec, P. Y.; Michelet, V. Top. Curr. Chem. 2011, 302, 31.
(c) Zhang, L.; Sun, J.; Kozmin, S. Adv. Synth. Catal. 2006, 348, 2271.
(d) Aubert, C.; Buisine, O.; Malacria, M. Chem. Rev. 2002, 102, 813.
ꢀ
ꢀ~
(e) Jimenez-Nunez, E.; Echavarren, A. M. Chem. Rev. 2008, 108, 3326.
(2) (a) Kamijo, S.; Dudley, G. B. J. Am. Chem. Soc. 2005, 127, 5028.
(b) Kamijo, S.; Dudley, G. B. J. Am. Chem. Soc. 2006, 128, 6499.
(c) Tummatorn, J.; Dudley, G. B. J. Am. Chem. Soc. 2008, 130, 5050.
(d) Tummatorn, J.; Dudley, G. B. Org. Lett. 2011, 13, 1572. (e)
Batsomboon, P.; Gold, B. A.; Alabugin, I. V.; Dudley, G. B. Synthesis
2012, 44, 1818.
(6) (a) Kolakowski, R. V.; Manpadi, M.; Zhang, Y .; Emge, T . J.;
Williams, L. J. J. Am. Chem. Soc. 2009, 131, 12910. (b) Saget, T.;
Cramer, N. Angew. Chem., Int. Ed. 2010, 49, 8962.
(7) (a) Kamijo, S.; Dudley, G. B. Org. Lett. 2006, 8, 175. (b) Jones,
D. M.; Lisboa, M. P.; Kamijo, S.; Dudley, G. B. J. Org. Chem. 2010, 75,
3260. (c) Tummatorn, J.; Dudley, G. B. Org. Lett. 2011, 13, 158.
(8) (a) Jones, D. M.; Kamijo, S.; Dudley, G. B. Synlett 2006, 936. (b)
Jones, D. M.; Dudley, G. B. Synlett 2010, 223. (c) Jones, D. M.; Dudley,
G. B. Tetrahedron 2010, 66, 4860. (d) Tummatorn, J.; Batsomboon, P.;
Clark, R. J.; Alabugin, I. V.; Dudley, G. B. J. Org. Chem. 2012, 77, 2093.
(3) Other recent work on alkynogenic fragmentations: (a) Draghici,
C.; Brewer, M. J. Am. Chem. Soc. 2008, 130, 3766. (b) Jabre, N. D.;
Brewer, M. J. Org. Chem. 2012, 77, 9910. (c) Fleming, I.; Ramarao, C.
Org. Biomol. Chem. 2004, 2, 1504–1510. (d) Boutillier, P.; Zard, S. Z.
Chem. Commun. 2001, 1304–1305.
(4) Vinylogous acyl triflate review: Chassaing, S.; Specklin, S.;
Weibel, J.-M.; Pale, P. Tetrahedron 2012, 68, 7245.
(5) (a) Eschenmoser, A.; Frey, A. Helv. Chim. Acta 1952, 35, 1660. (b)
Eschenmoser, A.; Felix, D.; Ohloff, G. Helv. Chim. Acta 1967, 50, 708.
(c) Tanabe, M.; Crowe, D. F.; Dehn, R. L. Tetrahedron Lett. 1967, 3943.
(d) Coke, J. L.; Williams, H. J.; Natarajan, S. J. Org. Chem. 1977, 42,
2380. (e) Shimizu, M.; Ando, R.; Kuwajima, I. J. Org. Chem. 1981, 46,
5246. (f) Fleming, I.; Ramarao, C. Org. Biomol. Chem. 2004, 2, 1504.
~
(e) Tummatorn, J.; Diaz Munoz, G.; Dudley, G. B. Tetrahedron Lett.
2013, 54, 1312. (f) Lisboa, M. P.; Jones, D. M.; Dudley, G. B. Org. Lett.
2013, 15, 886.
(9) Kamijo, S.; Dudley, G. B. Tetrahedron Lett. 2006, 47, 5629.
(10) We use the term “high-value” to reflect our perception that
improved access to these specific alkyne building blocks will enhance the
impact of strategies based on alkyne chemistry. In particular, neopentyl-
tethered 1,6-enynes are needed for gem-dimethylcyclopentane natural
products (cf. Figure 1; efficient synthetic routes to these targets are
exemplified herein).
r
10.1021/ol401839e
XXXX American Chemical Society